Academia.eduAcademia.edu

Outline

ON A CLASS OF AUTOMATA GROUPS GENERALIZING LAMPLIGHTER GROUPS

2005, International Journal of Algebra and Computation

https://doi.org/10.1142/S0218196705002761

Abstract

Dedicated to Professor Rostislav Grigorchuk on the occasion of his 50 th birthday.

References (11)

  1. L. Bartholdi, R. I. Grigorchuk and Z. Šuni ḱ, Branch groups in: Handbook of Algebra, Vol. 3, 989-1112, North-Holland, Amsterdam, 2003.
  2. W. Dicks and T. Schick, The spectral measure of certain elements of the complex group ring of a wreath product, Geom. Dedicata 93 (2002), 121-137.
  3. S. Eilenberg, "Automata, Languages and Machines," Academic Press, New York, Vol. A, 1974; Vol. B, 1976.
  4. R. I. Grigorchuk, P. Linnell, T. Schick and A. Żuk, On a question of Atiyah, C. R. Acad. Sci., Paris, Sr. I, Math. 331 (2000), 663-668.
  5. R. I. Grigorchuk, V. V. Nekrashevich and V. I. Sushchanskii, Automata, dynamical systems, and groups, in: R. I. Grigorchuk, (ed.), "Dynamical systems, automata, and infinite groups." Transl. from the Russian. Moscow: MAIK Nauka/Interperiodica Publishing, Proc. Steklov Inst. Math. 231 (2000), 128-203; translation from Tr. Mat. Inst. Steklova 231 (2000), 134-214.
  6. R. I. Grigorchuk and A. Żuk, The lamplighter group as a group generated by a 2-state automaton, and its spectrum, Geom. Dedicata 87 (2001), 209-244.
  7. M. Kambites, P. V. Silva and B. Steinberg, The spectra of lamplighter groups and Cayley Machines, in preparation.
  8. K. Krohn and J. Rhodes, Algebraic theory of machines, I: Prime decomposition theo- rem for finite semigroups and machines, Trans. Amer. Math. Soc. 116 (1965), 450-464.
  9. K. Krohn and J. Rhodes, Complexity of finite semigroups, Ann. of Math. 88 (1968), 128-160.
  10. K. Krohn, J. Rhodes and B. Tilson, Lectures on the algebraic theory of finite semi- groups and finite-state machines, Chapters 1, 5-9 (Chapter 6 with M. A. Arbib) of The Algebraic Theory of Machines, Languages, and Semigroups, (M. A. Arbib, ed.), Academic Press, New York, 1968.
  11. J. Rhodes, Monoids acting on trees: elliptic and wreath products and the holonomy theorem for arbitrary monoids with applications to infinite groups, Internat. J. Algebra Comput. 1 (1991), 253-279.