Academia.eduAcademia.edu

Outline

Distances on Lozenge Tilings

2009, Lecture Notes in Computer Science

https://doi.org/10.1007/978-3-642-04397-0_21

Abstract

In this paper, a structural property of the set of lozenge tilings of a 2n-gon is highlighted. We introduce a simple combinatorial value called Hamming-distance, which is a lower bound for the flipdistance (i.e. the number of necessary local transformations involving three lozenges) between two given tilings. It is here proven that, for n ≤ 4, the flip-distance between two tilings is equal to the Hamming-distance. Conversely, for n ≥ 6, We show that there is some deficient pairs of tilings for which the flip connection needs more flips than the combinatorial lower bound indicates.

References (13)

  1. P. Arnoux, V. Berthé, T. Fernique, D. Jamet, Functional stepped surfaces, flips and generalized substitutions, to appear in Theoretical Computer Science.
  2. A. Björner, M. Las Vergnas, B. Sturmfels, N. White, G. M. Ziegler, Oriented Matroids, Encyclopedia of Mathematics 46, Cambridge University Press (1993),
  3. O. Bodini and M. Latapy, Generalized Tilings with Height Functions, Morfismos 7 volume 3, (2003).
  4. O. Bodini, T. Fernique, E. Rémila, Characterizations of Flip-accessibility for Rhombus Tilings of the Whole Plane, Information and Computation, Volume 206, Issues 9-10, Sept-Oct 2008, p. 1065-1073.
  5. O. Bodini, T. Fernique, E. Rémila, Characterizations of Flip-accessibility for Domino Tilings of the Whole Plane FPSAC'07, 12p.
  6. F. Chavanon, E. Rémila, Rhombus tilings: decomposition and space structure, Dis- crete and Computational Geometry (2006) vol. 35, p. 329-358.
  7. N. G. De Bruijn, Dualization of multigrids, J. Phys. Fr. C3 47 (1986), p. 9-18.
  8. V. Desoutter, N. Destainville, Flip dynamics in three-dimensional random tilings. J. Phys. A: Math. Gen. 38 no. 1 (2005), p. 17-45.
  9. S. Felsner and H. Weil, A theorem on higher Bruhat orders, Discrete and Compu- tational Geometry 23 (2003), p. 121-127.
  10. B. Grunbaum, G. C. Shephard, Tilings and Patterns. New York: W. H. Freeman, (1986)
  11. R. Kenyon, Tiling a polygon with parallelograms. Algorithmica 9 no. 4 (1993), p. 382-397.
  12. E. Rémila, On the lattice structure of the set of tilings of a simply connected figure with dominoes, Theoretical Computer Science (2004) vol. 322 p. 409-422.
  13. W. P. Thurston, Conway's tiling group. American Mathematical Monthly 97 (1990), p. 757-773.