Distances on Lozenge Tilings
2009, Lecture Notes in Computer Science
https://doi.org/10.1007/978-3-642-04397-0_21Abstract
In this paper, a structural property of the set of lozenge tilings of a 2n-gon is highlighted. We introduce a simple combinatorial value called Hamming-distance, which is a lower bound for the flipdistance (i.e. the number of necessary local transformations involving three lozenges) between two given tilings. It is here proven that, for n ≤ 4, the flip-distance between two tilings is equal to the Hamming-distance. Conversely, for n ≥ 6, We show that there is some deficient pairs of tilings for which the flip connection needs more flips than the combinatorial lower bound indicates.
References (13)
- P. Arnoux, V. Berthé, T. Fernique, D. Jamet, Functional stepped surfaces, flips and generalized substitutions, to appear in Theoretical Computer Science.
- A. Björner, M. Las Vergnas, B. Sturmfels, N. White, G. M. Ziegler, Oriented Matroids, Encyclopedia of Mathematics 46, Cambridge University Press (1993),
- O. Bodini and M. Latapy, Generalized Tilings with Height Functions, Morfismos 7 volume 3, (2003).
- O. Bodini, T. Fernique, E. Rémila, Characterizations of Flip-accessibility for Rhombus Tilings of the Whole Plane, Information and Computation, Volume 206, Issues 9-10, Sept-Oct 2008, p. 1065-1073.
- O. Bodini, T. Fernique, E. Rémila, Characterizations of Flip-accessibility for Domino Tilings of the Whole Plane FPSAC'07, 12p.
- F. Chavanon, E. Rémila, Rhombus tilings: decomposition and space structure, Dis- crete and Computational Geometry (2006) vol. 35, p. 329-358.
- N. G. De Bruijn, Dualization of multigrids, J. Phys. Fr. C3 47 (1986), p. 9-18.
- V. Desoutter, N. Destainville, Flip dynamics in three-dimensional random tilings. J. Phys. A: Math. Gen. 38 no. 1 (2005), p. 17-45.
- S. Felsner and H. Weil, A theorem on higher Bruhat orders, Discrete and Compu- tational Geometry 23 (2003), p. 121-127.
- B. Grunbaum, G. C. Shephard, Tilings and Patterns. New York: W. H. Freeman, (1986)
- R. Kenyon, Tiling a polygon with parallelograms. Algorithmica 9 no. 4 (1993), p. 382-397.
- E. Rémila, On the lattice structure of the set of tilings of a simply connected figure with dominoes, Theoretical Computer Science (2004) vol. 322 p. 409-422.
- W. P. Thurston, Conway's tiling group. American Mathematical Monthly 97 (1990), p. 757-773.