Academia.eduAcademia.edu

Outline

A census of edge-transitive planar tilings

Abstract

Recently Graves, Pisanski and Watkins have determined the growth rates of Bilinski diagrams of one-ended, 3-connected, edge-transitive planar maps. The computation depends solely on the edge-symbol p, q; k, l that was introduced by B. Grünbaum and G. C. Shephard in their classification of such planar tessellations. We present a census of such tessellations in which we describe some of their properties, such as whether the edge-transitive planar tessellation is vertex-or face-transitive, self-dual, bipartite or Eulerian. In particular, we order such tessellations according to the growth rate and count the number of tessellations in each subclass.

References (17)

  1. Stanko Bilinski. Homogene mreže ravnine. Rad Jugoslav. Akad. Znanosti i Umjetnosti, 271 ( 1948) 145-255.
  2. Stanko Bilinski. Homogene Netze der Ebene. Bull. Internat. Acad. Yougoslave. Cl. Sci. Math. Phys. Tech. (N.S.), 2(1949) 63-111.
  3. J. A. Bruce Bilinski Diagrams and Geodesics in 1-Ended Planar Maps, Doctoral dissertation, Syracuse University, 2002.
  4. J. A. Bruce and M. E. Watkins, Concentric Bilinski diagrams, Aus- tralasian J. Combin., 30 (2004) 161-174.
  5. H. S. M. Coxeter, Regular Polytopes, 3rd Edition, Dover Publications, New York, 1973.
  6. J. E. Graver and M. E. Watkins, Locally Finite, Planar, Edge-Transitive Graphs, Memoirs of the Amer. Math. Soc. Vol. 126, No. 601, 1997.
  7. S. Graves, T. Pisanski and M. E. Watkins, Growth of Edge-Homogeneous Tessellations, SIAM J. Discrete Math. 23 (2008) 1-18.
  8. B. Grünbaum and G. C. Shephard. Edge-transitive planar graphs. J. Graph Theory, 11 (1987) 141-155.
  9. B. Grünbaum and G. C. Shephard. Tilings and Patterns. W.H. Freeman and Company, New York, 1987.
  10. J. F. Moran, The growth rate and balance of homogeneous tilings in the hyperbolic plane, Discrete Math. 173 (1997), 151-186.
  11. P. Niemeyer and M. E. Watkins, Geodetic rays and fibers in one-ended planar graphs. J. Combin. Theory (B), 69 (1997) 142-163.
  12. T. Pisanski, Counting edge-transitive, one-ended, three-connected planar maps with a given growth rate , Ars Math Contemp, submitted.
  13. T. Pisanski, T. W. Tucker, Growth in repeated truncations of maps , Atti del Seminario Matematico e Fisico dell'Università di Modena, Supp. al Vol. IL (2001), 167-176.
  14. T. Pisanski, T. W. Tucker, Growth in products of graphs, Australasian J. Combin. 26 ( 2002), 155-169.
  15. R. Sedgewick, P. Flajolet, Analysis of Algorithms, Addison-Wesley, Reading, Massachusetts, 1996.
  16. J. Šiagiová, and M. E. Watkins, Covalence sequences of planar vertex- homogeneous maps, 307 (2007) 599-614.
  17. M. E. Watkins, Ends and automorphisms of infinite graphs, in G. Hahn and G. Sabidussi (eds.) Graph Symmetry, Kluwer Academic Press, 1997 (379 -414).