A census of edge-transitive planar tilings
Abstract
Recently Graves, Pisanski and Watkins have determined the growth rates of Bilinski diagrams of one-ended, 3-connected, edge-transitive planar maps. The computation depends solely on the edge-symbol p, q; k, l that was introduced by B. Grünbaum and G. C. Shephard in their classification of such planar tessellations. We present a census of such tessellations in which we describe some of their properties, such as whether the edge-transitive planar tessellation is vertex-or face-transitive, self-dual, bipartite or Eulerian. In particular, we order such tessellations according to the growth rate and count the number of tessellations in each subclass.
References (17)
- Stanko Bilinski. Homogene mreže ravnine. Rad Jugoslav. Akad. Znanosti i Umjetnosti, 271 ( 1948) 145-255.
- Stanko Bilinski. Homogene Netze der Ebene. Bull. Internat. Acad. Yougoslave. Cl. Sci. Math. Phys. Tech. (N.S.), 2(1949) 63-111.
- J. A. Bruce Bilinski Diagrams and Geodesics in 1-Ended Planar Maps, Doctoral dissertation, Syracuse University, 2002.
- J. A. Bruce and M. E. Watkins, Concentric Bilinski diagrams, Aus- tralasian J. Combin., 30 (2004) 161-174.
- H. S. M. Coxeter, Regular Polytopes, 3rd Edition, Dover Publications, New York, 1973.
- J. E. Graver and M. E. Watkins, Locally Finite, Planar, Edge-Transitive Graphs, Memoirs of the Amer. Math. Soc. Vol. 126, No. 601, 1997.
- S. Graves, T. Pisanski and M. E. Watkins, Growth of Edge-Homogeneous Tessellations, SIAM J. Discrete Math. 23 (2008) 1-18.
- B. Grünbaum and G. C. Shephard. Edge-transitive planar graphs. J. Graph Theory, 11 (1987) 141-155.
- B. Grünbaum and G. C. Shephard. Tilings and Patterns. W.H. Freeman and Company, New York, 1987.
- J. F. Moran, The growth rate and balance of homogeneous tilings in the hyperbolic plane, Discrete Math. 173 (1997), 151-186.
- P. Niemeyer and M. E. Watkins, Geodetic rays and fibers in one-ended planar graphs. J. Combin. Theory (B), 69 (1997) 142-163.
- T. Pisanski, Counting edge-transitive, one-ended, three-connected planar maps with a given growth rate , Ars Math Contemp, submitted.
- T. Pisanski, T. W. Tucker, Growth in repeated truncations of maps , Atti del Seminario Matematico e Fisico dell'Università di Modena, Supp. al Vol. IL (2001), 167-176.
- T. Pisanski, T. W. Tucker, Growth in products of graphs, Australasian J. Combin. 26 ( 2002), 155-169.
- R. Sedgewick, P. Flajolet, Analysis of Algorithms, Addison-Wesley, Reading, Massachusetts, 1996.
- J. Šiagiová, and M. E. Watkins, Covalence sequences of planar vertex- homogeneous maps, 307 (2007) 599-614.
- M. E. Watkins, Ends and automorphisms of infinite graphs, in G. Hahn and G. Sabidussi (eds.) Graph Symmetry, Kluwer Academic Press, 1997 (379 -414).