Academia.eduAcademia.edu

Outline

Rhombus tilings: decomposition and space structure

2004, Electronic Notes in Discrete Mathematics

https://doi.org/10.1016/J.ENDM.2004.06.013

Abstract

We study the spaces of rhombus tilings, i.e. the graphs whose vertices are tilings of a fixed zonotope, and two tilings are linked if one can pass from one to the other one by a local transformation, called flip. We first use a decomposition method to encode rhombus tilings and give a useful characterization for a sequence of bits to encode a tiling. In codimension 2, we use the previous coding to get a canonical representation of tilings, and an order structure on the space of tilings, which is shown to be a graded poset, from which connectivity is deduced.

References (15)

  1. F. Bailly, N. Destainville, R. Mosseri, and M. Widom, Arctic octahedron in three- dimensional rhombus tilings and related integer solid partitions, Journal of Statistical Physics 109 (2002) 945-965.
  2. A. Bj örner, M. Las Vergnas, B. Sturmfels, N. White, and G. M. Ziegler, Oriented matroids, Encyclopedia of Mathematics, vol. 46, Cambridge University Press, 1999, Second Edi- tion.
  3. F. Chavanon and E. Rémila, Contractions of octagonal tilings with rhombic tiles, Tech. re- port, ENS Lyon, 2003, RR2003-44.
  4. Nicolas Destainville, Entropie configurationnelle des pavages aléatoires et des membranes dirigées, Ph.D. thesis, University Paris VI, 1997.
  5. N.G. de Bruijn, Dualization of multigrids, J. Phys. France C(47) (1981), 3-9.
  6. Serge Elnitsky, Rhombic tilings of polygons and classes of reduced words in Coxeter groups, Journal of Combinatorial Theory 77 (1997), 193-221.
  7. S. Felsner and H. Weil, A theorem on higher bruhat orders, Discrete and Computational Geometry 23 (2003), 121-127.
  8. S. Felsner and G.M. Ziegler, Zonotopes associated with higher bruhat orders, preprint.
  9. S. Felsner, On the number of arrangements of pseudolines, Discrete Computational Geome- try 18 (1997), 257-267.
  10. Richard Kenyon, Tiling a polygon with parallelograms, Algorithmica 9 (1993), 382-397.
  11. V. Reiner, The generalized baues problem, 38, MSRI Book, Cambridge University Press, 1999.
  12. J ürgen Richter-Gebert and G ünter Ziegler, Zonotopal tilings and the Bohne-Dress theorem, Contemporary Mathematics 178 (1994), 211-232.
  13. W.P. Thurston, Conway's tiling groups, American Mathematical Monthly 97 (1990), 757- 773.
  14. G ünter Ziegler, Lectures on polytopes, Graduate Texts in Mathematics, Springer-Verlag, 1995.
  15. G. Ziegler, Higher Bruhat orders and cyclic hyperplane arrangements, Topology 32 (1992), 259-279.