Gauge invariance, charge conservation, and variational principles
2008, Journal of Geometry and Physics
https://doi.org/10.1016/J.GEOMPHYS.2008.03.006Abstract
We present new results on the correspondence between symmetries, conservation laws and variational principles for field equations in general non-abelian gauge theories. Our main result states that second order field equations possessing translational and gauge symmetries and the corresponding conservation laws are always derivable from a variational principle. We also show by the way of examples that the above result fails in general for third order field equations.
References (30)
- I. M. Anderson, The Variational Bicomplex, Utah State University Technical Report, 1989; http://www.math.usu.edu/ ~fg_mp
- I. M. Anderson, T. Duchamp, On the existence of global variational principles, Amer. J. Math. 102 (1980), 781-868.
- I. M. Anderson, J. Pohjanpelto, Variational principles for differential equations with symmetries and conservation laws I: Second order scalar equations, Math. Ann. 299 (1994), 191-222.
- I. M. Anderson, J. Pohjanpelto, Variational principles for differential equations with symmetries and conservation laws II: Polynomial differential equations, Math. Ann. 301 (1995), 627-653.
- I. M. Anderson, J. Pohjanpelto, Symmetries, conservation laws and variational principles for vector field theories, Math. Proc. Camb. Philos. Soc. 120 (1996), 369-384.
- M. F. Atiyah, R. Bott, The Yang-Mills Equations over Riemann Surfaces, Philos. Trans. R. Soc. Lond. Ser. A 308 (1983), 523-615.
- E. Cartan, Sur les équations de la gravitation d'Einstein, J. Math. Pure Appl. 1 (1922), 141-204.
- S. K. Donaldson, P. B. Kronheimer, The geometry of four-manifolds, Oxford University Press, New York, 1990.
- F. Etayo Gordejuela, P. L. García Pérez, J. Muñoz Masqué, J. Pérez Alvarez, Higher-order Utiyama-Yang-Mills Lagrangians J. Geom. Phys. 57 (2007), 1089- 1097.
- P. H. Frampton, Gauge Field Theories, 2nd ed., Wiley, New York, 2000.
- A. Fuster, M. Henneaux, A. Maas, BRST Quantization: a Short Review, Int. J. Geom. Methods Mod. Phys. 2 (2005), 939-963.
- D. M. Gitman, I. V. Tyutin, Quantization of fields with constraints, Springer, New York, 1990.
- G. W. Horndeski, Differential operators associated with the Euler-Lagrange oper- ator, Tensor 28 (1974), 303-318.
- G. W. Horndeski, Gauge invariance and charge conservation, Tensor 32 (1978), 131-139.
- G. W. Horndeski, Gauge invariance and charge conservation in non-Abelian gauge theories, Arch. Rat. Mech. Anal. 75 (1981), 211-227.
- A. Jaffe, C. Taubes, Vortices and monopoles, Progress in Physics 2, Birkhuser, Mass. (1980).
- J. Janyška, Higher-order Utiyama invariant interaction, Rep. Math. Phys. 59 (2007), 63-81.
- M. C. López, R. J. Noriega, C. G. Schifini, The equivariant inverse problem and the uniqueness of the Yang-Mills equations, J. Math. Phys. 30 (1989), 2382-2387.
- D. Lovelock, The Einstein tensor and its generalizations, J. Math. Phys. 12 (1971), 498-501.
- D. Lovelock, Vector-tensor field theories and the Einstein-Maxwell field equations, Proc. Roy. Soc. London Ser. A 341 (1974), 285-297.
- D. Lovelock, Divergence-free third order concomitants of the metric tensor in three dimensions, Topics in differential geometry (in memory of Evan Tom Davies), pp. 87-98. Adademic Press, New York, 1976.
- D. Lovelock, Bivector field theories, divergence-free vectors and the Einstein- Maxwell field equations, J. Math. Phys. 18 (1977), 1491-1498.
- J. M. Morgan, The Seiberg-Witten Equations and Applications to the Topology of Smooth Four-Manifolds, Princeton University Press, Princeton, 1995.
- P. J. Olver, Conservation laws and null divergences, Math. Proc. Camb. Philos. Soc. 94 (1983), 529-540.
- P. J. Olver, Applications of Lie Groups to Differential Equations, GTM 107, 2nd ed., Springer, New York, 1993.
- J. Pohjanpelto, Takens' problem for systems of first order differential equations, Ark. Mat. 33 (1995), 343-356.
- J. Pohjanpelto, I. M. Anderson, Infinite dimensional Lie algebra cohomology and the cohomology of invariant Euler-Lagrange complexes: a preliminary report, Pro- ceedings of the 6th International Conference on Differential Geometry and Ap- plications, Brno, 1995 (J. Janyska, I. Kolar, J. Slovak, eds.) Masaryk University, Brno, Czech Republic 1996, pp. 427-448.
- F. Takens, Symmetries, conservation laws and variational principles, Lecture Notes in Mathematics No. 597, Springer, New York (1977), pp. 581-603.
- H. Vermeil, Notiz über das mittlere Krümmungsmass einer n-fach Riemannschen Mannigfaltigkeit, Akad. Wiss. Göttingen Nachr. (1917), 334-344.
- H. Weyl, Space-Time-Matter, 4th ed., Dover, New York, 1922.