Academia.eduAcademia.edu

Outline

Gauge invariance, charge conservation, and variational principles

2008, Journal of Geometry and Physics

https://doi.org/10.1016/J.GEOMPHYS.2008.03.006

Abstract

We present new results on the correspondence between symmetries, conservation laws and variational principles for field equations in general non-abelian gauge theories. Our main result states that second order field equations possessing translational and gauge symmetries and the corresponding conservation laws are always derivable from a variational principle. We also show by the way of examples that the above result fails in general for third order field equations.

References (30)

  1. I. M. Anderson, The Variational Bicomplex, Utah State University Technical Report, 1989; http://www.math.usu.edu/ ~fg_mp
  2. I. M. Anderson, T. Duchamp, On the existence of global variational principles, Amer. J. Math. 102 (1980), 781-868.
  3. I. M. Anderson, J. Pohjanpelto, Variational principles for differential equations with symmetries and conservation laws I: Second order scalar equations, Math. Ann. 299 (1994), 191-222.
  4. I. M. Anderson, J. Pohjanpelto, Variational principles for differential equations with symmetries and conservation laws II: Polynomial differential equations, Math. Ann. 301 (1995), 627-653.
  5. I. M. Anderson, J. Pohjanpelto, Symmetries, conservation laws and variational principles for vector field theories, Math. Proc. Camb. Philos. Soc. 120 (1996), 369-384.
  6. M. F. Atiyah, R. Bott, The Yang-Mills Equations over Riemann Surfaces, Philos. Trans. R. Soc. Lond. Ser. A 308 (1983), 523-615.
  7. E. Cartan, Sur les équations de la gravitation d'Einstein, J. Math. Pure Appl. 1 (1922), 141-204.
  8. S. K. Donaldson, P. B. Kronheimer, The geometry of four-manifolds, Oxford University Press, New York, 1990.
  9. F. Etayo Gordejuela, P. L. García Pérez, J. Muñoz Masqué, J. Pérez Alvarez, Higher-order Utiyama-Yang-Mills Lagrangians J. Geom. Phys. 57 (2007), 1089- 1097.
  10. P. H. Frampton, Gauge Field Theories, 2nd ed., Wiley, New York, 2000.
  11. A. Fuster, M. Henneaux, A. Maas, BRST Quantization: a Short Review, Int. J. Geom. Methods Mod. Phys. 2 (2005), 939-963.
  12. D. M. Gitman, I. V. Tyutin, Quantization of fields with constraints, Springer, New York, 1990.
  13. G. W. Horndeski, Differential operators associated with the Euler-Lagrange oper- ator, Tensor 28 (1974), 303-318.
  14. G. W. Horndeski, Gauge invariance and charge conservation, Tensor 32 (1978), 131-139.
  15. G. W. Horndeski, Gauge invariance and charge conservation in non-Abelian gauge theories, Arch. Rat. Mech. Anal. 75 (1981), 211-227.
  16. A. Jaffe, C. Taubes, Vortices and monopoles, Progress in Physics 2, Birkhuser, Mass. (1980).
  17. J. Janyška, Higher-order Utiyama invariant interaction, Rep. Math. Phys. 59 (2007), 63-81.
  18. M. C. López, R. J. Noriega, C. G. Schifini, The equivariant inverse problem and the uniqueness of the Yang-Mills equations, J. Math. Phys. 30 (1989), 2382-2387.
  19. D. Lovelock, The Einstein tensor and its generalizations, J. Math. Phys. 12 (1971), 498-501.
  20. D. Lovelock, Vector-tensor field theories and the Einstein-Maxwell field equations, Proc. Roy. Soc. London Ser. A 341 (1974), 285-297.
  21. D. Lovelock, Divergence-free third order concomitants of the metric tensor in three dimensions, Topics in differential geometry (in memory of Evan Tom Davies), pp. 87-98. Adademic Press, New York, 1976.
  22. D. Lovelock, Bivector field theories, divergence-free vectors and the Einstein- Maxwell field equations, J. Math. Phys. 18 (1977), 1491-1498.
  23. J. M. Morgan, The Seiberg-Witten Equations and Applications to the Topology of Smooth Four-Manifolds, Princeton University Press, Princeton, 1995.
  24. P. J. Olver, Conservation laws and null divergences, Math. Proc. Camb. Philos. Soc. 94 (1983), 529-540.
  25. P. J. Olver, Applications of Lie Groups to Differential Equations, GTM 107, 2nd ed., Springer, New York, 1993.
  26. J. Pohjanpelto, Takens' problem for systems of first order differential equations, Ark. Mat. 33 (1995), 343-356.
  27. J. Pohjanpelto, I. M. Anderson, Infinite dimensional Lie algebra cohomology and the cohomology of invariant Euler-Lagrange complexes: a preliminary report, Pro- ceedings of the 6th International Conference on Differential Geometry and Ap- plications, Brno, 1995 (J. Janyska, I. Kolar, J. Slovak, eds.) Masaryk University, Brno, Czech Republic 1996, pp. 427-448.
  28. F. Takens, Symmetries, conservation laws and variational principles, Lecture Notes in Mathematics No. 597, Springer, New York (1977), pp. 581-603.
  29. H. Vermeil, Notiz über das mittlere Krümmungsmass einer n-fach Riemannschen Mannigfaltigkeit, Akad. Wiss. Göttingen Nachr. (1917), 334-344.
  30. H. Weyl, Space-Time-Matter, 4th ed., Dover, New York, 1922.