Academia.eduAcademia.edu

Outline

Symmetries and conservation laws in non-Hermitian field theories

2017, Physical Review D

https://doi.org/10.1103/PHYSREVD.96.065027

Abstract

Anti-Hermitian mass terms are considered, in addition to Hermitian ones, for PT-symmetric complex-scalar and fermionic field theories. In both cases, the Lagrangian can be written in a manifestly symmetric form in terms of the PT-conjugate variables, allowing for an unambiguous definition of the equations of motion. After discussing the resulting constraints on the consistency of the variational procedure, we show that the invariance of a non-Hermitian Lagrangian under a continuous symmetry transformation does not imply the existence of a corresponding conserved current. Conserved currents exist, but these are associated with transformations under which the Lagrangian is not invariant and which reflect the well-known interpretation of PT-symmetric theories in terms of systems with gain and loss. A formal understanding of this unusual feature of non-Hermitian theories requires a careful treatment of Noether's theorem, and we give specific examples for illustration.

References (12)

  1. C. M. Bender, Introduction to PT -symmetric quantum theory, Contemp. Phys. 46 (2005) 277 [quant-ph/0501052 [quant-ph]];
  2. C. M. Bender and P. D. Mannheim, Exactly solvable PT -symmetric Hamiltonian having no Hermitian counterpart, Phys. Rev. D 78 (2008) 025022 [arXiv:0804.4190 [hep-th]].
  3. C. M. Bender, V. Branchina and E. Messina, Ordinary versus PT -symmetric φ 3 quantum field theory, Phys. Rev. D 85 (2012) 085001 [arXiv:1201.1244 [hep-th]].
  4. C. M. Bender, V. Branchina and E. Messina, Critical behavior of the PT -symmetric iφ 3 quan- tum field theory, Phys. Rev. D 87 (2013) 085029 [arXiv:1301.6207 [hep-th]].
  5. C. M. Bender, D. W. Hook, N. E. Mavromatos and S. Sarkar, Infinite Class of PT - Symmetric Theories from One Timelike Liouville Lagrangian, Phys. Rev. Lett. 113 (2014) 231605 [arXiv:1408.2432 [hep-th]].
  6. C. M. Bender, D. W. Hook, N. E. Mavromatos and S. Sarkar, PT -symmetric interpretation of unstable effective potentials, J. Phys. A: Math. Theor. 49 (2016) 45LT01 [arXiv:1506.01970 [hep-th]].
  7. C. M. Bender, H. F. Jones and R. J. Rivers, Dual PT -symmetric quantum field theories, Phys. Lett. B 625 (2005) 333 [hep-th/0508105].
  8. J. Alexandre and C. M. Bender, Foldy-Wouthuysen transformation for non-Hermitian Hamil- tonians, J. Phys. A: Math. Theor. 48 (2015) 185403 [arXiv:1501.01232 [hep-th]].
  9. J. Alexandre, C. M. Bender and P. Millington, Non-Hermitian extension of gauge theories and implications for neutrino physics, JHEP 1511 (2015) 111 [arXiv:1509.01203 [hep-th]].
  10. E. Noether, Invariante Variationsprobleme, Nachrichten von der Gesellschaft der Wis- senschaften zu Göttingen, Mathematisch-Physikalische Klasse (1918) 235-257.
  11. M. N. Chernodub, The Nielsen-Ninomiya theorem, PT -invariant non-Hermiticity and single 8-shaped Dirac cone, J. Phys. A: Math. Theor. 50 (2017) 385001 [arXiv:1701.07426 [cond- mat.mes-hall]].
  12. J. Alexandre, C. M. Bender and P. Millington, Light neutrino masses from a non-Hermitian Yukawa theory, J. Phys.: Conf. Ser. 873 (2017) 012047 [arXiv:1703.05251 [hep-th]].