Academia.eduAcademia.edu

Outline

Conserved quantities in the variational equations

Revista Mexicana de Fisica

Abstract

Noether's theorem relating continuous symmetries of a Lagrangian system to the existence of conserved quantities is shown to be valid at the level of the variational equations of the system. This result can be helpful in the study of perturbations and of integrability in various areas of current interest. As examples, we derive conserved quatities in linearized general relativity and obtain conserved quantities valid in perturbed classical dynamics.

References (30)

  1. E.T. Whittaker, A Treatise on the Analytical Dynamics of Par- ticles and Rigid Bodies (Cambridge University Press, Cam- bridge, 1937) sect. 112
  2. V.I. Arnold, Mathematical Methods of Classical Mechanics (Springer-Verlag, New York, 1978) Appendix 1.
  3. C. Lanczos, The Variational Principles of Mechanics (Univer- sity of Toronto Press, Toronto, 1970).
  4. Y. Matsuno, Phys. Lett. A 285 (2001) 286;
  5. R.S. Johnson, A Modern Introduction to the Mathematical Theory of Water Waves (Cambridge University Press, Cambridge, 1997).
  6. E.A. Jackson, Perspectives on Nonlinear Dynamics Vol. I (Cambridge University Press, Cambridge, 1989).
  7. Ch.W. Misner, K.S. Thorne, and J.A. Wheeler, Gravitation (Freeman, New York, 1973).
  8. D.C. Robinson, Math. Proc. Camb. Phil. Soc. 78 (1975) 351 (and personal communication).
  9. R. Carretero-González, H.N. Núñez-Yépez, and A.L. Salas- Brito, Phys. Lett. A 188 (1994) 48.
  10. R.A. Sussman, J. Math. Phys. 29 (1988) 945; R.A. Sussman and L. García-Trujillo, Class. Quantum Grav. 19 (2002) 2897.
  11. A.H. Taub, Comm. Math. Phys. 15 (1969) 235.
  12. K.M. Case, Phys. Rev. Lett. 55 (1985) 445.
  13. S. Chandrasekhar, Principles of Stellar Dynamics (University of Chicago Press, Chicago, 1942) Appendix 2.
  14. W.-H. Steeb, Nonlinear Evolution Equations and the Painlevé Test (World Scientific, Singapore, 1988) especially sections 1.3-1.6.
  15. H.N. Núñez-Yépez, J. Delgado, and A.L. Salas-Brito, in A. Anzaldo-Meneses, B. Bonnard, J. P. Gauthier and F. Monroy- Pérez (Eds.) Contemporary Trends in Geometric Control The- ory and its Applications (World Scientific, Singapore, 2002) p. 405.
  16. V. Jurdjevic, Geometric Control Theory, (Cambridge Univer- sity Press, New York, 1997) Ch. 11.
  17. K.M. Case, Phys. Rev. Lett. 40 (1978) 351.
  18. H.N. Núñez-Yépez and A.L. Salas-Brito, Phys. Lett. A 275 (2000) 218.
  19. O. Amici, B. Casciaro, M. Francaviglia, Rend. Mat. 16 (1996) 233;
  20. B. Casciaro, M. Francaviglia, Rend. Mat. 16 (1996) 637;
  21. M. Ferraris, M. Francaviglia, and V. Tapia, J. Phys. A: Math. Gen. 26 (1993) 433.
  22. D. Lovelock and H. Rund, Tensors, Differential Forms, & Vari- ational Principles (Wiley-Interscience, New York, 1975).
  23. E.N. Glass, J.N.J. Goldberg, J. Math. Phys. 10 (1970) 3400.
  24. F.J. Ernst, Phys. Rev. 167 (1968) 1175.
  25. W. Tichy, E.E. Flanagan, Class. Quantum Grav. 18 (2001) 3995.
  26. G.F.R. Ellis, H. van Elst, arXiv gr-qc/9812046.
  27. D. Boccaletti, G. Pucacco, Theory of Orbits Vol. 2, Perturbative and Geometrical Methods (Springer-Verlag, Berlin, 1999) Ch. 11.
  28. S. Weinberg, The Quantum Theory of Fields (Cambridge Uni- versity Press, Cambridge, 1995) Vol. I, section 7.2.
  29. G. Giachetta, L. Mangiarotti, and G. Sardanashvily, J. Math. Phys. 40 1376; G. Giachetta, L. Mangiarotti, and G. Sar- danashvily, New Lagrangian and Hamiltonian Methods in Field Theory (World Scientific, Singapore, 1997);
  30. L. Mangiarotti, and G. Sardanashvily, Gauge Mechanics (World Scientific, Sin- gapore, 1998).