Handling congestion in crowd motion modeling
2011, Networks and Heterogeneous Media
https://doi.org/10.3934/NHM.2011.6.485Abstract
We address here the issue of congestion in the modeling of crowd motion, in the non-smooth framework: contacts between people are not anticipated and avoided, they actually occur, and they are explicitly taken into account in the model. We limit our approach to very basic principles in terms of behavior, to focus on the particular problems raised by the non-smooth character of the models. We consider that individuals tend to move according to a desired, or spontanous, velocity. We account for congestion by assuming that the evolution realizes at each time an instantaneous balance between individual tendencies and global constraints (overlapping is forbidden): the actual velocity is defined as the closest to the desired velocity among all admissible ones, in a least square sense. We develop those principles in the microscopic and macroscopic settings, and we present how the framework of Wasserstein distance between measures allows to recover the sweeping process nature of the problem on the macroscopic level, which makes it possible to obtain existence results in spite of the non-smooth character of the evolution process. Micro and macro approaches are compared, and we investigate the similarities together with deep differences of those two levels of description.
References (62)
- A. D. Aleksandrov, A theorem on triangles in a metric space and some of its applications, Trudy Mat. Inst. Steklov. 38 Izdat. Akad. Nauk SSSR, Moscow (1951) 5-23.
- L. Ambrosio, Movimenti minimizzanti, Rend. Accad. Naz. Sci. XL Mem. Mat. Sci. Fis. Natur. 113 (1995) 191-246.
- L. Ambrosio, N. Gigli, G. Savaré, Gradient flows in metric spaces and in the space of proba- bility measures, Lectures in Mathematics (ETH Zürich, 2005).
- N. Bellomo, C. Dogbe, On the modelling crowd dynamics from scalling to hyperbolic macro- scopic models, Math. Mod. Meth. Appl. Sci. 18 Suppl. (2008) 1317-1345.
- F. Bernicot, J. Venel, Differential inclusions with proximal normal cones in Banach spaces, J. Convex Anal. 17(2) (2010) 451-484.
- F. Bernicot, J. Venel, Convergence order of a numerical scheme for sweeping process, submit- ted, available at http://arxiv.org/abs/1009.2837
- V. Blue, J.L. Adler, Cellular automata microsimulation for modeling bi-directional pedestrian walkways Transportation Research B 35 (2001) 293-312.
- A. Borgers, H. Timmermans, A model of pedestrian route choice and demand for retail facilities within inner-cityshopping areas Geographycal Analysis 18 (1986) 115-128.
- A. Borgers, H. Timmermans, City centre entry points, store location patterns and pedestrian route choice behavior: A microlevel simulation model, Socio-Economic Planning Sciences 20 (1986) 25-31.
- M. Bounkhel, L. Thibault, Nonconvex sweeping process and prox-regularity in Hilbert space, J. Nonlinear Convex Anal. 6, (2001) 359-374.
- C. Burstedde, K. Klauck, A. Schadschneider and J. Zittartz Simulation of pedestrian dynamics using a two-dimensional cellular automaton Physica A 295 (2001) 507-525.
- A. Canino, On p-convex sets and geodesics, J. Differential Equations 75, (1988) 118-157.
- C. Chalons, Numerical approximation of a macroscopic model of pedestrian flows, SIAM J. Sci. Comput. 29(2) (2007) 539-555.
- C. Chalons, Transport-equilibrium schemes for pedestrian flows with nonclassical shocks, Traffic and Granular Flows'05, (Springer, 2007) 347-356.
- F.H. Clarke, R.J. Stern, P.R. Wolenski, Proximal smoothness and the lower-C 2 property, J. Convex Anal. 2 (1995), 117-144.
- G. Colombo, V.V. Goncharov, The sweeping processes without convexity, Set-Valued Anal. 7, (1999) 357-374.
- G. Colombo, M.D.P. Monteiro Marques, Sweeping by a continuous prox-regular set, J. Dif- ferential Equations 187(1) , (2003) 46-62.
- R.M. Colombo, M.D. Rosini, Pedestrian flows and non-classical shocks, Math. Methods Appl. Sci. 28 (2005) 1553-1567.
- V. Coscia, C. Canavesio, First-order macroscopic modelling of human crowd dynamics, Math. Mod. Meth. Appl. Sci. 18 (2008) 1217-1247.
- J. Dambrine, B. Maury, N. Meunier, A. Roudneff-Chupin, A congestion Model for Cell mi- gration, to appear in Communications in Pure and Applied Analysis.
- E. De Giorgi, New problems on minimizing movements, Boundary Value Problems for PDE and Applications, C. Baiocchi and J. L. Lions eds. (Masson, 1993) 81-98.
- P. Degond, L. Navoret, R. Bon, D. Sanchez, Congestion in a macroscopic model of self-driven particles modeling gregariousness, J. Stat. Phys.138 (2010) 85-125.
- M. Di Francesco, P.A. Markowich, J.F. Pietschmann, M.T. Wolfram, On the Hughes' model of pedestrian flow: The one-dimensional case, J. Diff. Eq. Volume 250, Issue 3, 1 pp. 1334-1362, 2011.
- C. Dogbe, On the numerical solutions of second order macroscopic models of pedestrian flows, Comput. Appl. Math. 567 (2008) 1884-1898.
- A. Donev, S. Torquato, F. H. Stillinger, and Robert Connelly, Jamming in hard sphere and disk packings, J. Appl. Phys. 95, 989 (2004).
- J. L. Doob, Classical Potential Theory and Its Probabilistic Counterpart, Springer, 1984 (2001).
- J.F. Edmond, L. Thibault, Relaxation of an optimal control problem involving a perturbed sweeping process, Math. Program Ser B 104(2-3) (2005) 347-373.
- J.F. Edmond, L. Thibault, BV solutions of nonconvex sweeping process differential inclusion with perturbation, J. Differential Equations 226(1) (2006) 135-179.
- H. Federer, Curvature Measures, Trans. Amer. Math. Soc. 93 , (1959) 418-491.
- P.G. Gipps, B. Marksjö, A micro-simulation model for pedestrian flows,Mathematics and Computers in Simulation 27 (1985) 95-105.
- B. Gustafsson, M. Sakai, Properties of some balayage operators, with applications to quad- rature domains and moving boundary problems, Nonlinear Analysis, Theory, Methods & Applications 22(10), (1994) 1221-1245.
- S. Gwynne, E.R. Galea, P.J. Lawrence and L. Filippidis, Modelling occupant interaction with fire conditions using the buildingEXODUS evacuation model Fire safety journal 36(4) (2001) 327-357.
- D. Helbing, A fluid dynamic model for the movement of pedestrians, Complex Systems 6 (1992) 391-415.
- D. Helbing, P. Molnar, F. Schweitzer, Computer simulations of pedestrian dynamics and trail formation, Evolution of Natural Structures, Sonderforschungsbereich 230 (Stuttgart, 1994) 229-234.
- D. Helbing, P. Molnár, Social force model for pedestrian dynamics, Phys. Rev E 51 (1995) 4282-4286.
- R. L. Hughes, A continuum theory for the flow of pedestrian, Transport. Res. Part B 36 (2002) 507-535.
- R. L. Hughes, The flow of human crowds, Ann. Rev. Fluid Mech. 35 (2003) 169-183.
- R. Jordan, D. Kinderlehrer, F. Otto, The variational formulation of the Fokker-Planck equa- tion, SIAM J. Math. Anal. 29(1) (1998) 1-17.
- L. Levine, Y. Peres, Scaling Limits for Internal Aggregation Models with Multiple Sources, J. d'Analyse Math. 11, pp. 151-220 (2010).
- G.G. Løvås, Modelling and simulation of pedestrian traffic flow, Transportation Research B 28 (1994) 429-443.
- B. Maury, A time-stepping scheme for inelastic collisions, Numerische Mathematik 102 (4), (2006) 649 -679.
- B. Maury, J. Venel, A discrete contact model for crowd motion, Mathematical Modelling and Numerical Analysis 45 (2011) 145-168.
- B. Maury, A. Roudneff-Chupin, F. Santambrogio, A macroscopic crowd motion model of gradient flow type, Mathematical Models and Methods in Applied Sciences 20(10), (2010) 1787-1821.
- J.J. Moreau, Evolution problem associated with a moving convex set in a Hilbert space, J. Differential Equations 26(3) (1977) 346-374.
- J.J. Moreau, Décomposition orthogonale d'un espace Hilbertien selon deux cônes mutuelle- ment polaires, C. R. Acad. Sci., Série I, 255, (1962) 199-274.
- K. Nagel, From particle hopping models to traffic flow theory Transportation Research Record 1644 (1998) 1-9.
- B. Piccoli, A. Tosin, Time-evolving measures and macroscopic modeling of pedestrian flow, Arch. Ration. Mech. Anal., to appear.
- B. Piccoli, A. Tosin, Pedestrian flows in bounded domains with obstacles, Contin. Mech. Thermodyn. 21(2) (2009) 85-107.
- R. A. Poliquin and R. T. Rockafellar, Prox-regular functions in variational analysis, Trans. Amer. Math. Soc. 348 (1996), 1805-1838.
- R.A. Poliquin, R.T. Rockafellar, L.Thibault, Local differentiability of distance functions, Trans. Amer. Math. Soc. 352, (2000) 5231-5249.
- R.T. Rockafellar, R. Wets, Variational Analysis, Grundlehren der Mathematischen, Wis- senschaften 317, (Springer, 1998).
- Y. Saisho, H. Tanaka, Stochastic differential equations for mutually reflecting Brownian balls, Osaka J. Math.. 23(3), (1986), 725-740
- A. Schadschneider, Cellular automaton approach to pedestrian dynamics-theory, In Pedes- trian and Evacuation Dynamics Eds M. Schreckenberg and S. D. Sharma (2001) Springer Berlin 75-85.
- A. Schadschneider, A. Kirchner and K. Nishinari, From ant trails to pedestrian dynamics Applied Bionics and Biomechanics 1 (2003) 11-19.
- L. Thibault, Sweeping Process with regular and nonregular sets, J. Differential Equations 193 (1), (2003) 1-26.
- S. Torquato and F. H. Stillinger, Jammed hard-particle packings: From Kepler to Bernal and beyond, Reviews of Modern Physics, Volume 82, July-September 2010.
- S. Torquato, T. M. Truskett, and P. G. Debenedetti, Is Random Close Packing of Spheres Well Defined, Phys. Rev. Lett. 84, (2000) 2064-2067.
- J. Venel, A numerical scheme for a class of sweeping processes, to appear in Numerische Mathematik.
- J. Venel, Integrating strategies in numerical modelling of crowd motion, Pedestrian and Evac- uation Dynamics '08 (Springer 2010) 641-646.
- J. Venel, Modélisation mathématique et numérique des mouvements de foule, PhD thesis, Université Paris-Sud XI (2008),available at http://tel.archives-ouvertes.fr/tel-00346035/fr.
- C. Villani, Topics in optimal transportation, Grad. Stud. Math. 58 (AMS, Providence 2003).
- S.J. Yuhaski, J.M. Macgregor Smith, Modelling circulation systems in buildings using state dependent queueing models Queueing Systems 4 (1989) 319-338.