Maximal Nontraceable Graphs with Toughness less than One
2008, The Electronic Journal of Combinatorics
Abstract
A graph $G$ is maximal nontraceable (MNT) if $G$ does not have a hamiltonian path but, for every $e\in E\left( \overline{G}\right) $, the graph $G+e$ has a hamiltonian path. A graph $G$ is 1-tough if for every vertex cut $S$ of $G$ the number of components of $G-S$ is at most $|S|$. We investigate the structure of MNT graphs that are not 1-tough. Our results enable us to construct several interesting new classes of MNT graphs.
References (16)
- J.A. Bondy, Variations on the hamiltonian theme, Can. Math. Bull. 15 (1972), 57-62.
- F. Bullock, M. Frick and J. Singleton, Smallest claw-free, 2-connected, nontraceable graphs and the construction of maximal nontraceable graphs, Discrete Math. 307 (2007) 1266-1275.
- B.P. Chisala, On generating snarks, Discuss. Math. Graph Theory 18 (1998), 147- 158.
- L. Clark and R. Entringer, Smallest maximally nonhamiltonian graphs, Period. Math. Hung. 14 (1983), 57-68.
- L.H. Clark, R.C. Entringer and H.D. Shapiro, Smallest maximally nonhamiltonian graphs II, Graphs Comb. 8 (1992), 225-231.
- the electronic journal of combinatorics 15 (2008), #R18
- A. Dudek, G.Y. Katona and A.P. Wojda, Hamiltonian Path Saturated Graphs with Small Size, Discrete App. Math. 154(9) (2006), 1372-1379.
- M. Frick and J. Singleton, Cubic maximal nontraceable graphs, Discrete Math. 307 (2007) 885-891.
- M. Frick and J. Singleton, Lower bound for the size of maximal nontraceable graphs, Electronic Journal of Combinatorics 12(1) (2005) R32.
- R. Kalinowski and Z. Skupień, Large Isaacs' graphs are maximally non-Hamilton- connected, Discrete Math. 82 (1990) 101-104.
- R.C. Read and R.J. Wilson, An Atlas of Graphs, Oxford Science Publications, Oxford University Press, 1998.
- J.E. Singleton, Maximal Nontraceable Graphs, Ph.D. thesis, University of South Africa, Pretoria, 2005.
- Z. Skupień, On homogeneously traceable graphs and digraphs, 27 Internationales Wis- senschtliches Kolloquium, Tech. Hochschule Ilmenau (GDR), 1982, Heft 5, 199-201.
- Z. Skupień, Maximally non-Hamilton-connected and hypohamiltonian graphs, in: M. Borowiecki and Z. Skupień, eds., Graphs, Hypergraphs and Matroids. III (Proc. Kalsk 1988 Conf), Higher Coll. of Eng. Zielona Góra, 1989, 133-144.
- B. Zelinka, Graphs maximal with respect to absence of hamiltonian paths, Discuss. Math. Graph Theory 18 (1998), 205-208.
- the electronic journal of combinatorics 15 (2008), #R18