Academia.eduAcademia.edu

Outline

Maximal Nontraceable Graphs with Toughness less than One

2008, The Electronic Journal of Combinatorics

Abstract

A graph $G$ is maximal nontraceable (MNT) if $G$ does not have a hamiltonian path but, for every $e\in E\left( \overline{G}\right) $, the graph $G+e$ has a hamiltonian path. A graph $G$ is 1-tough if for every vertex cut $S$ of $G$ the number of components of $G-S$ is at most $|S|$. We investigate the structure of MNT graphs that are not 1-tough. Our results enable us to construct several interesting new classes of MNT graphs.

References (16)

  1. J.A. Bondy, Variations on the hamiltonian theme, Can. Math. Bull. 15 (1972), 57-62.
  2. F. Bullock, M. Frick and J. Singleton, Smallest claw-free, 2-connected, nontraceable graphs and the construction of maximal nontraceable graphs, Discrete Math. 307 (2007) 1266-1275.
  3. B.P. Chisala, On generating snarks, Discuss. Math. Graph Theory 18 (1998), 147- 158.
  4. L. Clark and R. Entringer, Smallest maximally nonhamiltonian graphs, Period. Math. Hung. 14 (1983), 57-68.
  5. L.H. Clark, R.C. Entringer and H.D. Shapiro, Smallest maximally nonhamiltonian graphs II, Graphs Comb. 8 (1992), 225-231.
  6. the electronic journal of combinatorics 15 (2008), #R18
  7. A. Dudek, G.Y. Katona and A.P. Wojda, Hamiltonian Path Saturated Graphs with Small Size, Discrete App. Math. 154(9) (2006), 1372-1379.
  8. M. Frick and J. Singleton, Cubic maximal nontraceable graphs, Discrete Math. 307 (2007) 885-891.
  9. M. Frick and J. Singleton, Lower bound for the size of maximal nontraceable graphs, Electronic Journal of Combinatorics 12(1) (2005) R32.
  10. R. Kalinowski and Z. Skupień, Large Isaacs' graphs are maximally non-Hamilton- connected, Discrete Math. 82 (1990) 101-104.
  11. R.C. Read and R.J. Wilson, An Atlas of Graphs, Oxford Science Publications, Oxford University Press, 1998.
  12. J.E. Singleton, Maximal Nontraceable Graphs, Ph.D. thesis, University of South Africa, Pretoria, 2005.
  13. Z. Skupień, On homogeneously traceable graphs and digraphs, 27 Internationales Wis- senschtliches Kolloquium, Tech. Hochschule Ilmenau (GDR), 1982, Heft 5, 199-201.
  14. Z. Skupień, Maximally non-Hamilton-connected and hypohamiltonian graphs, in: M. Borowiecki and Z. Skupień, eds., Graphs, Hypergraphs and Matroids. III (Proc. Kalsk 1988 Conf), Higher Coll. of Eng. Zielona Góra, 1989, 133-144.
  15. B. Zelinka, Graphs maximal with respect to absence of hamiltonian paths, Discuss. Math. Graph Theory 18 (1998), 205-208.
  16. the electronic journal of combinatorics 15 (2008), #R18