Searching for crystal-ice domains in amorphous ices
2018, Physical Review Materials
https://doi.org/10.1103/PHYSREVMATERIALS.2.075601References (50)
- P. G. Debenedetti. Supercooled and glassy water. J. Phys.: Condens. Matter, 15:R1669, 2003.
- C. A. Angell. Amorphous water. Annu. Rev. Phys. Chem., 55:559, 2004.
- T. Loerting and N. Giovambattista. Amorphous ices: ex- periments and numerical simulations. J. Phys.: Condens. Matter, 18:R919, 2006.
- O. Mishima and H. E. Stanley. The relationship between liquid, supercooled and glassy water. Nature, 396:329, 1998.
- T. Loerting, V. Fuentes-Landete, P. H. Handlea, M. Seidl, K. Amann-Winkel, C. Gainaru, and R. Bohme. The glass transition in high-density amorphous ice. J. Non-Cryst. Solids, 407:423430, 2015.
- K. Amann-Winkel, R. Bohmer, F. Fujara, C. Gainaru, B. Geil, and T. Loerting. Colloquium: Waters controver- sial glass transitions. Rev. Mod. Phys., 88:011002, 2016.
- E. Meyer. New method for vitrifying water and other liq- uids by rapid cooling of their aerosols. J. Appl. Phys., 58:663, 1985.
- E. F. Burton and W. F. Oliver. Nature, 135:505, 1935.
- P. Jenniskens and D. F. Blake. Structural transitions in amorphous water ice and astrophysical implications. Science, 265:753, 1994.
- O. Mishima. Reversible first-order transition between two h2o amorphs at ∼ 0.2 gpa and ∼ 135 k. J. Chem. Phys., 100:5910, 1994.
- O. Mishima, L. D. Calvert, and E. Whalley. 'melting ice' i at 77 k and 10 kbar: a new method of making amorphous solids. Nature, 310:393-395, 1984.
- O. Andersson. Glass-liquid transition of water at high pres- sure. Proc. Natl. Acad. Sci. USA, 108:11013-11016, 2011.
- T. Loerting, W. Schustereder, K. Winkel, C. G. Salzmann, I. Kohl, , and E. Mayer. Amorphous ice: Stepwise forma- tion of very-high-density amorphous ice from low-density amorphous ice at 125 k. Phys. Rev. Lett., 96:025702, 2006.
- K. Winkel, M. Bauer, E. Mayer, M. Seidl, M. S. Elsaesser, and T. Loerting. Structural transitions in amorphous h2o and d2o: the effect of temperature. J. Phys.: Condens. Matter, 20:494212, 2008.
- K. Winkel, E. S. Elsaesser, E. Mayer, , and T. Loerting. Water polyamorphism: Reversibility and (dis)continuity. J. Chem. Phys., 128:044510, 2008.
- K. Winkel, E. Mayer, and T. Loerting. Equilibrated high- density amorphous ice and its first-order transition to the low-density form. J. Phys. Chem. B, 115:14141-14148, 2011.
- E. L. Gromnitskaya, O. V. Stal'gorova, V. V. Brazhkin, and A. G. Lyapin. Ultrasonic study of the nonequilibrium pressure-temperature diagram of h2o ice. Phys. Rev. B, 64:094205, 2011.
- T. Loerting, C. Salzmann, I. Kohl, E. Mayer, and A. Hall- brucker. A second distinct structural state of high-density amorphous ice at 77 k and 1 bar. Phys. Chem. Chem. Phys., 3:5355-5357, 2001.
- K. Winkel, D. T. Bowron, T. Loerting, E. Mayer, and J. L. Finney. Relaxation effects in low density amorphous ice: Two distinct structural states observed by neutron diffraction. J. Chem. Phys., 130:204502, 2009.
- R. J. Nelmes, J. S. Loveday, T. Strässle, C. L. Bull, M. Guthrie, G. Hamel, and S. Klotz. Annealed high- density amorphous ice under pressure. Nature Phys., 2:414, 2006.
- T. Loerting, K. Winkel, M. Bauer, C. Mitterdorfer, P. H. Handle, E. Mayer, J. L. Finney, and D. Bowron. How many amorphous ices are there? Phys. Chem. Chem. Phys., 13:8783-8794, 2011.
- B. Santra, R. A. DiStasio Jr., F. Martelli, and R. Car. Local structure analysis in ab initio liquid water. Mol. Phys., 113:2829-2841, 2015.
- C. A. Tulk, C. J. Benmore, L. Urquidi, D. D. Klug, J. Neuefeing, B. Tomberli, and P. A. Egelstaff. Structural studies of several distinct metastable forms of amorphous ice. Science, 297:1320-1323, 2002.
- J. L. Finney, A. Hallbrucker, I. Kohl, A. K. Soper, and D. T. Bowron. Structures of high and low density amorphous ice by neutron diffraction. Phys. Rev. Lett., 88:225503, 2002.
- A. K. Soper and M. A. Ricci. Structures of high-density and low-density water. Phys. Rev. Lett., 84:2881, 2000.
- J. Wong, D. A. Jahn, and N. Giovambattista. Pressure- induced transformations in glassy water: A computer sim- ulation study using the tip4p/2005 model. J. Chem. Phys., 143:074501, 2015.
- R. Martonak, D. Donadio, and M. Parrinello. Evolu- tion of the structure of amorphous ice: From low-density amorphous through high-density amorphous to very high- density amorphous ice. J. Chem. Phys., 122:134501, 2005.
- F. Martelli, S. Torquato, N. Giovambattista, and R. Car. Large-scale structure and hyperuniformity of amorphous ices. Phys. Rev. Lett., 119:136002, 2017.
- J. S. Tse, D. D. Klug, C. A. Tulk, I. Swainson, E. C. Sens- son, C.-K. Loong, V. Shapakov, V. R. Belosludov, R. V. Belosludov, and Y. Kawazoe. The mechanism of pressure- induced amorphization of ice ih. Nature, 400:647-649, 1999.
- G. P. Johari. On the amorphization of hexagonal ice, the nature of water's low-density amorph, and the continuity of molecular kinetics in supercooled water. Phys. Chem. Chem. Phys., 2:1567-1577, 2000.
- G. P. Johari and O. Andersson. Mechanisms for pressure- and time-dependent amorphization of ice under pressure. Phys. Rev. B, 70:184108, 2004.
- C. G. Salzmann, T. Loerting, T. Kohl, E. Mayer, and A. Hallbrucker. Pure ice iv from high-density amorphous ice. J. Phys. Chem. B, 106:5587-5590, 2002.
- C. G. Salzmann, E. Mayer, and A. Hallbrucker. Effect of heating rate and pressure on the crystallization kinetics of high-density amorphous ice on isobaric heating between 0.2 and 1.9 gpa. Phys. Chem. Chem. Phys., 6:5156-5165, 20024.
- F. Martelli, H.-Y. Ko, E. C. Oguz, and R. Car. Local-order metric for condensed phase environments. Phys. Rev. B, 97:064105, 2016.
- F. Martelli, H.-Y. Ko, C. C. Borallo, and G. Franzese. Structural properties of water confined by phospholipid membranes. Front. Phys., 13:136801, 2018.
- B. Santra, H.-Y. Ko, Y. W. Yeh, F. Martelli, I. Kaganovich, Y. Raitses, and R. Car. Root-growth of boron nitride nanotubes: Experiments and Ab Initio sim- ulations. arXiv:1803.11374 [physics.chem-ph], 2018.
- J. J. Shephard, S. Ling, G. C. Sosso, A. Michaelides, B. Slater, and C. G. Salzmann. Is high-density amorphous ice simply a "derailed" state along the ice i to ice iv path- way? J. Phys. Chem. Lett., 8:1645-1650, 2017.
- J. L. F. Abascal and C. Vega. Pressure-induced trans- formations in glassy water: A computer simulation study using the tip4p/2005 model. J. Chem. Phys., 123:234505, 2005.
- J. Engstler and N. Giovambattista. J. Chem. Phys., Heating-and pressure-induced transformations in amor- phous and hexagonal ice: A computer simulation study using the TIP4P/2005 model:074505, 2017.
- P.-L. Chau and J. Hardwick. A new order parameter for tetrahedral configurations. Mol. Phys., 93:511-518, 1998.
- J. R. Errington and P. G. Debenedetti. Relationship be- tween structural order and the anomalies of liquid water. Nature, 409:318-321, 2001.
- F. Martelli and N. Giovambattista. In preparation.
- B. Santra, J. Klimes, D. Alfé, A. Tkatchenko, B. Slater, A. Michaelides, R. Car, and M. Scheffler. Hydrogen bonds and van der waals forces in ice at ambient and high pres- sures. Phys. Rev. Lett., 107:185701, 2011.
- T. Bartles-Rausch, V. Bergeron, J. H. E. Cartwright, R. Escribano, J. L. Finney, H. Grothe, P. J. Gutirrez, J. Haapala, W. F. Fuchs, J. B. C. Pettersson, S. D. Price, C. I. Sainz-Daz, D. J. Stokes, G. Strazzulla, E. S. Thom- son, H. Trinks, and N. Uras-Aytemiz. Ice structures, pat- terns, and processes: A view across the icefields. Rev. Mod. Phys., 84:885-994, 2012.
- M. M. Conde, M. A. Gonzalez, J. F. L. Abascal, and C. Vega. Determining the phase diagram of water from direct coexistence simulations: The phase diagram of the tip4p/2005 model revisited. J. Chem. Phys., 139:154505, 2013.
- H. Engelhardt and B. Kamb. Structure of ice iv, a metastable high-pressure phase. J. Chem. Phys., 48:5887- 5899, 1981.
- C. G. Salzmann, I. Kohl, T. Loerting, E. Mayer, and A. Hallbrucker. Pure ices iv and xii from high-density amorphous ice. Can. J. Phys., 81:25-32, 2003.
- P. R. Cromwell. Polyhedra. New York: Cambridge Uni- versity Press, 1999.
- N. W. Johnson. Convex polyhedra with regular faces. Canad. J. of Math., 18:169, 1966.
- C. Lin, J. S. Smith, S. V. Sinogeikin, and G. Shen. Ex- perimental evidence of low-density liquid water upon rapid decompression. Proc. Natl. Acad. Sci. U.S.A., 2018.