Academia.eduAcademia.edu

Outline

Searching for crystal-ice domains in amorphous ices

2018, Physical Review Materials

https://doi.org/10.1103/PHYSREVMATERIALS.2.075601

References (50)

  1. P. G. Debenedetti. Supercooled and glassy water. J. Phys.: Condens. Matter, 15:R1669, 2003.
  2. C. A. Angell. Amorphous water. Annu. Rev. Phys. Chem., 55:559, 2004.
  3. T. Loerting and N. Giovambattista. Amorphous ices: ex- periments and numerical simulations. J. Phys.: Condens. Matter, 18:R919, 2006.
  4. O. Mishima and H. E. Stanley. The relationship between liquid, supercooled and glassy water. Nature, 396:329, 1998.
  5. T. Loerting, V. Fuentes-Landete, P. H. Handlea, M. Seidl, K. Amann-Winkel, C. Gainaru, and R. Bohme. The glass transition in high-density amorphous ice. J. Non-Cryst. Solids, 407:423430, 2015.
  6. K. Amann-Winkel, R. Bohmer, F. Fujara, C. Gainaru, B. Geil, and T. Loerting. Colloquium: Waters controver- sial glass transitions. Rev. Mod. Phys., 88:011002, 2016.
  7. E. Meyer. New method for vitrifying water and other liq- uids by rapid cooling of their aerosols. J. Appl. Phys., 58:663, 1985.
  8. E. F. Burton and W. F. Oliver. Nature, 135:505, 1935.
  9. P. Jenniskens and D. F. Blake. Structural transitions in amorphous water ice and astrophysical implications. Science, 265:753, 1994.
  10. O. Mishima. Reversible first-order transition between two h2o amorphs at ∼ 0.2 gpa and ∼ 135 k. J. Chem. Phys., 100:5910, 1994.
  11. O. Mishima, L. D. Calvert, and E. Whalley. 'melting ice' i at 77 k and 10 kbar: a new method of making amorphous solids. Nature, 310:393-395, 1984.
  12. O. Andersson. Glass-liquid transition of water at high pres- sure. Proc. Natl. Acad. Sci. USA, 108:11013-11016, 2011.
  13. T. Loerting, W. Schustereder, K. Winkel, C. G. Salzmann, I. Kohl, , and E. Mayer. Amorphous ice: Stepwise forma- tion of very-high-density amorphous ice from low-density amorphous ice at 125 k. Phys. Rev. Lett., 96:025702, 2006.
  14. K. Winkel, M. Bauer, E. Mayer, M. Seidl, M. S. Elsaesser, and T. Loerting. Structural transitions in amorphous h2o and d2o: the effect of temperature. J. Phys.: Condens. Matter, 20:494212, 2008.
  15. K. Winkel, E. S. Elsaesser, E. Mayer, , and T. Loerting. Water polyamorphism: Reversibility and (dis)continuity. J. Chem. Phys., 128:044510, 2008.
  16. K. Winkel, E. Mayer, and T. Loerting. Equilibrated high- density amorphous ice and its first-order transition to the low-density form. J. Phys. Chem. B, 115:14141-14148, 2011.
  17. E. L. Gromnitskaya, O. V. Stal'gorova, V. V. Brazhkin, and A. G. Lyapin. Ultrasonic study of the nonequilibrium pressure-temperature diagram of h2o ice. Phys. Rev. B, 64:094205, 2011.
  18. T. Loerting, C. Salzmann, I. Kohl, E. Mayer, and A. Hall- brucker. A second distinct structural state of high-density amorphous ice at 77 k and 1 bar. Phys. Chem. Chem. Phys., 3:5355-5357, 2001.
  19. K. Winkel, D. T. Bowron, T. Loerting, E. Mayer, and J. L. Finney. Relaxation effects in low density amorphous ice: Two distinct structural states observed by neutron diffraction. J. Chem. Phys., 130:204502, 2009.
  20. R. J. Nelmes, J. S. Loveday, T. Strässle, C. L. Bull, M. Guthrie, G. Hamel, and S. Klotz. Annealed high- density amorphous ice under pressure. Nature Phys., 2:414, 2006.
  21. T. Loerting, K. Winkel, M. Bauer, C. Mitterdorfer, P. H. Handle, E. Mayer, J. L. Finney, and D. Bowron. How many amorphous ices are there? Phys. Chem. Chem. Phys., 13:8783-8794, 2011.
  22. B. Santra, R. A. DiStasio Jr., F. Martelli, and R. Car. Local structure analysis in ab initio liquid water. Mol. Phys., 113:2829-2841, 2015.
  23. C. A. Tulk, C. J. Benmore, L. Urquidi, D. D. Klug, J. Neuefeing, B. Tomberli, and P. A. Egelstaff. Structural studies of several distinct metastable forms of amorphous ice. Science, 297:1320-1323, 2002.
  24. J. L. Finney, A. Hallbrucker, I. Kohl, A. K. Soper, and D. T. Bowron. Structures of high and low density amorphous ice by neutron diffraction. Phys. Rev. Lett., 88:225503, 2002.
  25. A. K. Soper and M. A. Ricci. Structures of high-density and low-density water. Phys. Rev. Lett., 84:2881, 2000.
  26. J. Wong, D. A. Jahn, and N. Giovambattista. Pressure- induced transformations in glassy water: A computer sim- ulation study using the tip4p/2005 model. J. Chem. Phys., 143:074501, 2015.
  27. R. Martonak, D. Donadio, and M. Parrinello. Evolu- tion of the structure of amorphous ice: From low-density amorphous through high-density amorphous to very high- density amorphous ice. J. Chem. Phys., 122:134501, 2005.
  28. F. Martelli, S. Torquato, N. Giovambattista, and R. Car. Large-scale structure and hyperuniformity of amorphous ices. Phys. Rev. Lett., 119:136002, 2017.
  29. J. S. Tse, D. D. Klug, C. A. Tulk, I. Swainson, E. C. Sens- son, C.-K. Loong, V. Shapakov, V. R. Belosludov, R. V. Belosludov, and Y. Kawazoe. The mechanism of pressure- induced amorphization of ice ih. Nature, 400:647-649, 1999.
  30. G. P. Johari. On the amorphization of hexagonal ice, the nature of water's low-density amorph, and the continuity of molecular kinetics in supercooled water. Phys. Chem. Chem. Phys., 2:1567-1577, 2000.
  31. G. P. Johari and O. Andersson. Mechanisms for pressure- and time-dependent amorphization of ice under pressure. Phys. Rev. B, 70:184108, 2004.
  32. C. G. Salzmann, T. Loerting, T. Kohl, E. Mayer, and A. Hallbrucker. Pure ice iv from high-density amorphous ice. J. Phys. Chem. B, 106:5587-5590, 2002.
  33. C. G. Salzmann, E. Mayer, and A. Hallbrucker. Effect of heating rate and pressure on the crystallization kinetics of high-density amorphous ice on isobaric heating between 0.2 and 1.9 gpa. Phys. Chem. Chem. Phys., 6:5156-5165, 20024.
  34. F. Martelli, H.-Y. Ko, E. C. Oguz, and R. Car. Local-order metric for condensed phase environments. Phys. Rev. B, 97:064105, 2016.
  35. F. Martelli, H.-Y. Ko, C. C. Borallo, and G. Franzese. Structural properties of water confined by phospholipid membranes. Front. Phys., 13:136801, 2018.
  36. B. Santra, H.-Y. Ko, Y. W. Yeh, F. Martelli, I. Kaganovich, Y. Raitses, and R. Car. Root-growth of boron nitride nanotubes: Experiments and Ab Initio sim- ulations. arXiv:1803.11374 [physics.chem-ph], 2018.
  37. J. J. Shephard, S. Ling, G. C. Sosso, A. Michaelides, B. Slater, and C. G. Salzmann. Is high-density amorphous ice simply a "derailed" state along the ice i to ice iv path- way? J. Phys. Chem. Lett., 8:1645-1650, 2017.
  38. J. L. F. Abascal and C. Vega. Pressure-induced trans- formations in glassy water: A computer simulation study using the tip4p/2005 model. J. Chem. Phys., 123:234505, 2005.
  39. J. Engstler and N. Giovambattista. J. Chem. Phys., Heating-and pressure-induced transformations in amor- phous and hexagonal ice: A computer simulation study using the TIP4P/2005 model:074505, 2017.
  40. P.-L. Chau and J. Hardwick. A new order parameter for tetrahedral configurations. Mol. Phys., 93:511-518, 1998.
  41. J. R. Errington and P. G. Debenedetti. Relationship be- tween structural order and the anomalies of liquid water. Nature, 409:318-321, 2001.
  42. F. Martelli and N. Giovambattista. In preparation.
  43. B. Santra, J. Klimes, D. Alfé, A. Tkatchenko, B. Slater, A. Michaelides, R. Car, and M. Scheffler. Hydrogen bonds and van der waals forces in ice at ambient and high pres- sures. Phys. Rev. Lett., 107:185701, 2011.
  44. T. Bartles-Rausch, V. Bergeron, J. H. E. Cartwright, R. Escribano, J. L. Finney, H. Grothe, P. J. Gutirrez, J. Haapala, W. F. Fuchs, J. B. C. Pettersson, S. D. Price, C. I. Sainz-Daz, D. J. Stokes, G. Strazzulla, E. S. Thom- son, H. Trinks, and N. Uras-Aytemiz. Ice structures, pat- terns, and processes: A view across the icefields. Rev. Mod. Phys., 84:885-994, 2012.
  45. M. M. Conde, M. A. Gonzalez, J. F. L. Abascal, and C. Vega. Determining the phase diagram of water from direct coexistence simulations: The phase diagram of the tip4p/2005 model revisited. J. Chem. Phys., 139:154505, 2013.
  46. H. Engelhardt and B. Kamb. Structure of ice iv, a metastable high-pressure phase. J. Chem. Phys., 48:5887- 5899, 1981.
  47. C. G. Salzmann, I. Kohl, T. Loerting, E. Mayer, and A. Hallbrucker. Pure ices iv and xii from high-density amorphous ice. Can. J. Phys., 81:25-32, 2003.
  48. P. R. Cromwell. Polyhedra. New York: Cambridge Uni- versity Press, 1999.
  49. N. W. Johnson. Convex polyhedra with regular faces. Canad. J. of Math., 18:169, 1966.
  50. C. Lin, J. S. Smith, S. V. Sinogeikin, and G. Shen. Ex- perimental evidence of low-density liquid water upon rapid decompression. Proc. Natl. Acad. Sci. U.S.A., 2018.