Nonclassical Nucleation Pathways in Stacking-Disordered Crystals
2021
https://doi.org/10.1103/PHYSREVX.11.031006Abstract
The nucleation of crystals from the liquid melt is often characterized by a competition between different crystalline structures or polymorphs, and can result in nuclei with heterogeneous compositions. These mixed-phase nuclei can display nontrivial spatial arrangements, such as layered and onion-like structures, whose composition varies according to the radial distance, and which so far have been explained on the basis of bulk and surface free-energy differences between the competing phases. Here we extend the generality of these non-classical nucleation processes, showing that layered and onion-like structures can emerge solely based on structural fluctuations even in absence of free-energy differences. We consider two examples of competing crystalline structures, hcp and fcc forming in hard spheres, relevant for repulsive colloids and dense liquids, and the cubic and hexagonal diamond forming in water, relevant also for other group 14 elements such as carbon and silicon. We intro...
References (104)
- E. B. Moore and V. Molinero, Structural transformation in supercooled water controls the crystallization rate of ice, Nature 479, 506 (2011).
- T. B.-R. et al., Ice structures, patterns, and processes: A view across the icefields, Rev. Mod. Phys. 84, 885 (2012).
- G. C. Sosso, J. Chen, S. J. Cox, M. Fitzner, P. Pedevilla, A. Zen, and A. Michaelides, Crystal nucleation in liq- uids: Open questions and future challenges in molecular dynamics simulations, Chem. Rev. 116, 7078 (2016).
- F. Leoni, R. Shi, H. Tanaka, and J. Russo, Crystalline clusters in mw water: stability, growth, and grain boundaries, J. Chem. Phys. 151, 044505 (2019).
- L. Lupi, A. Hudait, B. Peters, M. Grünwald, R. Gotchy Mullen, A. H. Nguyen, and V. Molinero, Role of stacking disorder in ice nucleation, Nature 551, 218 (2017).
- Y. J. Kaufman, D. Tanré, and O. Boucher, A satellite view of aerosols in the climate system, Nature 419, 215 (2002).
- B. J. Murray, D. A. Knopf, and A. K. Bertram, The for- mation of cubic ice under conditions relevant to earth's atmosphere, Nature 434, 202 (2005).
- S. Sastry, Ins and outs of ice nucleation, Nature 438, 746 (2005).
- K. Sassen, Dusty ice clouds over alaska, Nature 434, 456 (2005).
- R. J. Herbert, B. J. Murray, S. J. Dobbie, and T. Koop, Sensitivity of liquid clouds to homogeneous parametrizations, Geophys. Res. Lett. 42, 1599 (2015).
- R. A. Shaw, A. J. Durant, and Y. Mi, Heterogeneous surface crystallization observed in undercooled water, J. Phys. Chem. B 109, 9865 (2005).
- A. Y. Lee, D. Erdemir, and A. S. Myerson, Crystal poly- morphism in chemical process development, Annu. Rev. Chem. Biomol. Eng. 2, 259 (2011).
- P. Vishweshwar, J. A. McMahon, M. Oliveira, M. L. Peterson, and M. J. Zaworotko, The predictably elusive form ii of aspirin, J. Am. Chem. Soc. 127, 16802 (2005).
- L. Berthier and G. Tarjus, Nonperturbative effect of at- tractive forces in viscous liquids, Phys. Rev. Lett. 103, 170601 (2009).
- A. K. Bacher, T. B. Schrøeder, and J. C. Dyre, Explain- ing why simple liquids are quasi-universal, Nat. Com- mun. 5, 5424 (2014).
- V. Molinero and E. B. Moore, Water modeled as an in- termediate element between carbon and silicon, J. Phys. Chem. B 113, 4008 (2009).
- S. Pronk and D. Frenkel, Can stacking faults in hard- sphere crystals anneal out spontaneously?, J. Chem. Phys. 110, 4589 (1999).
- T. L. Malkin, B. J. Murray, C. G. Salzmann, V. Mo- linero, S. J. Pickering, and T. F. Whale, Stacking dis- order in ice i, Phys. Chem. Chem. Phys. 17, 60 (2015).
- A. Zaragoza, M. M. Conde, J. R. Espinosa, C. Valeriani, C. Vega, and E. Sanz, Competition between ices ih and ic in homogeneous water freezing, J. Chem. Phys. 143, 134504 (2015).
- B. Cheng, C. Dellago, and M. Ceriotti, Theoretical pre- diction of the homogeneous ice nucleation rate: dis- entangling thermodynamics and kinetics, Phys. Chem. Chem. Phys. 20, 28732 (2018).
- D. Quigley, Communication: Thermodynamics of stack- ing disorder in ice nuclei, J. Chem. Phys. 141, 121101 (2014).
- H. Tanaka, H. Tong, R. Shi, and J. Russo, Revealing key structural features hidden in liquids and glasses, Nat. Rev. Phys. 1, 333 (2019).
- E. Allahyarov, K. Sandomirski, S. U. Egelhaaf, and H. Löwen, Crystallization seeds favour crystallization only during initial growth, Nat. Commun. 6, 7110 (2015).
- S. Prestipino, The barrier to ice nucleation in monatomic water, J. chem. Phys. 148, 124505 (2018).
- D. Kashchiev, P. G. Vekilov, and A. B. Kolomeisky, Ki- netics of two-step nucleation of crystals, The Journal of chemical physics 122, 244706 (2005).
- D. Erdemir, A. Y. Lee, and A. S. Myerson, Nucleation of crystals from solution: classical and two-step models, Accounts of chemical research 42, 621 (2009).
- P. G. Vekilov, The two-step mechanism of nucleation of crystals in solution, Nanoscale 2, 2346 (2010).
- T. Schilling, H. J. Schöpe, M. Oettel, G. Opletal, and I. Snook, Precursor-mediated crystallization process in suspensions of hard spheres, Physical review letters 105, 025701 (2010).
- T. K. Haxton, L. O. Hedges, and S. Whitelam, Crystal- lization and arrest mechanisms of model colloids, Soft matter 11, 9307 (2015).
- J. Russo and H. Tanaka, Nonclassical pathways of crys- tallization in colloidal systems, MRS Bulletin 41, 369 (2016).
- G. C. Sosso, J. Chen, S. J. Cox, M. Fitzner, P. Pedev- illa, A. Zen, and A. Michaelides, Crystal nucleation in liquids: Open questions and future challenges in molec- ular dynamics simulations, Chemical reviews 116, 7078 (2016).
- S. Lee, E. G. Teich, M. Engel, and S. C. Glotzer, En- tropic colloidal crystallization pathways via fluid-fluid transitions and multidimensional prenucleation motifs, Proceedings of the National Academy of Sciences 116, 14843 (2019).
- P. Tan, N. Xu, and L. Xu, Visualizing kinetic pathways of homogeneous nucleation in colloidal crystallization, Nature Physics 10, 73 (2014).
- H. Jiang, P. G. Debenedetti, and A. Z. Panagiotopou- los, Nucleation in aqueous nacl solutions shifts from 1- step to 2-step mechanism on crossing the spinodal, The Journal of chemical physics 150, 124502 (2019).
- D. Gebauer, A. Völkel, and H. Cölfen, Stable prenu- cleation calcium carbonate clusters, Science 322, 1819 (2008).
- E. M. Pouget, P. H. H. Bomans, J. A. C. M. Goos, P. M. Frederik, G. de With, and N. A. J. M. Sommerdijk, The initial stages of template-controlled caco3 formation re- vealed by cryo-tem, Science 323, 1455 (2009).
- R. P. Sear, The non-classical nucleation of crystals: microscopic mechanisms and applications to molecular crystals, ice and calcium carbonate, International Ma- terials Reviews 57, 328 (2012).
- D. Kashchiev, Classical nucleation theory approach to two-step nucleation of crystals, Journal of Crystal Growth 530, 125300 (2020).
- G. I. Tóth, T. Pusztai, G. Tegze, G. Tóth, and L. Gránásy, Amorphous nucleation precursor in highly nonequilibrium fluids, Phys. Rev. Lett. 107, 175702 (2011).
- K. Barros and W. Klein, Liquid to solid nucleation via onion structure droplets, J. Chem. Phys. 139, 174505 (2013).
- M. Santra, R. S. Singh, and B. Bagchi, Nucleation of a stable solid from melt in the presence of multiple metastable intermediate phases: wetting, ostwald's step rule, and vanishing polymorphs, J. Phys. Chem. B 117, 13154 (2013).
- J. F. Lutsko, How crystals form: A theory of nucleation pathways, Sci. Adv. 5, eaav7399 (2019).
- S. Tang, J. Wang, B. Svendsen, and D. Raabe, Competi- tive bcc and fcc crystal nucleation from non-equilibrium liquids studied by phase-field crystal simulation, Acta Mater. 139, 196 (2017).
- D. James, S. Beairsto, C. Hartt, O. Zavalov, I. Saika- Voivod, R. K. Bowles, and P. H. Poole, Phase transitions in fluctuations and their role in two-step nucleation, J. Chem. Phys. 150, 074501 (2019).
- C. Desgranges and J. Delhommelle, Can ordered pre- cursors promote the nucleation of solid solutions?, Phys. Rev. Lett. 123, 195701 (2019).
- P. J. Steinhardt, D. R. Nelson, and M. Ronchetti, Bond- orientational order in liquids and glasses, Phys. Rev. B 28, 784 (1983).
- L. Filion, M. Hermes, R. Ni, and M. Dijkstra, Crystal nucleation of hard spheres using molecular dynamics, umbrella sampling, and forward flux sampling: A com- parison of simulation techniques, J. Chem. Phys. 133, 244115 (2010).
- J. Taffs, S. R. Williams, H. Tanaka, and C. P. Royall, Structure and kinetics in the freezing of nearly hard spheres, Soft Matter 9, 297 (2013).
- H. Chan, M. J. Cherukara, B. Narayanan, T. D. Loef- fler, C. Benmore, S. K. Gray, and S. K. R. S. Sankara- narayanan, Machine learning coarse grained models for water, Nat. Commun. 10 (2019).
- H. Niu, Y. I. Yang, and M. Parrinello, Temperature de- pendence of homogeneous nucleation in ice, Phys. Rev. Lett. 122, 245501 (2019).
- F. Martelli, N. Giovambattista, S. Torquato, and R. Car, Searching for crystal-ice domains in amorphous ices, Phys. Rev. Mater. 2, 075601 (2018).
- E. A. Lazar, J. Han, and D. J. Srolovitz, Topological framework for local structure analysis in condensed mat- ter, Proc. Natl. Acad. Sci. USA 112, E5769 (2015).
- A. V. Brukhno, J. Anwar, R. Davidchack, and R. Han- del, Challenges in molecular simulation of homogeneous ice nucleation, J. Phys. Condens. Matter 20, 494243 (2008).
- A. L. Patterson, Ambiguities in the x-ray analysis of crystal structures, Phys. Rev. 65, 195 (1944).
- G. A. Gallet and F. Pietrucci, Structural cluster analysis of chemical reactions in solution, J. Chem. Phys. 139, 074101 (2013).
- S. Pipolo, M. Salanne, G. Ferlat, S. Klotz, A. M. Saitta, and F. Pietrucci, Navigating at will on the water phase diagram, Phys. Rev. Lett. 119, 245701 (2017).
- L. Zhang, J. Han, H. Wang, R. Car, and W. E, Deep potential molecular dynamics: A scalable model with the accuracy of quantum mechanics, Phys. Rev. Lett. 120, 143001 (2018).
- J. Behler and M. Parrinello, Generalized neural-network representation of high-dimensional potential-energy sur- faces, Phys. Rev. Lett. 98, 146401 (2007).
- S. Chmiela, A. Tkatchenko, H. E. Sauceda, I. Poltavsky, K. T. Schütt, and K.-R. Müller, Machine learning of accurate energy-conserving molecular force fields, Sci. Adv. 3, e1603015 (2017).
- P. Geiger and C. Dellago, Neural networks for local structure detection in polymorphic systems, J. of Chem. Phys. 139, 164105 (2013).
- V. Bapst, T. Keck, A. Grabska-Barwińska, C. Donner, E. D. Cubuk, S. S. Schoenholz, A. Obika, A. W. R. Nel- son, T. Back, D. Hassabis, and P. Kohli, Unveiling the predictive power of static structure in glassy systems, Nature Physics 16, 448 (2020).
- F. Martelli, F. Leoni, F. Sciortino, and J. Russo, Con- nection between liquid and non-crystalline solid phases in water, The Journal of Chemical Physics 153, 104503 (2020).
- M. Spellings and S. C. Glotzer, Machine learning for crystal identification and discovery, AIChE J. 64, 2198 (2018).
- W. F. Reinhart, A. W. Long, M. P. Howard, A. L. Fer- guson, and A. Z. Panagiotopoulos, Machine learning for autonomous crystal structure identification, Soft Matter 13, 4733 (2017).
- W. F. Reinhart and A. Z. Panagiotopoulos, Multi-atom pattern analysis for binary superlattices, Soft Matter 13, 6803 (2017).
- E. Boattini, M. Ram, F. Smallenburg, and L. Filion, Neural-network-based order parameters for classifica- tion of binary hard-sphere crystal structures, Mol. Phy. 116, 3066 (2018).
- E. Boattini, M. Dijkstra, and L. Filion, Unsupervised learning for local structure detection in colloidal sys- tems, J. Chem. Phys. 151, 154901 (2019).
- C. S. Adorf, T. C. Moore, Y. J. Melle, and S. C. Glotzer, Analysis of self-assembly pathways with unsupervised machine learning algorithms, J. Phys. Chem. B (2019).
- E. G. Noya, C. Vega, and E. de Miguel, Determination of the melting point of hard spheres from direct coexis- tence simulation methods, J. Chem. Phys. 128, 154507 (2003).
- X. Glorot and Y. Bengio, Understanding the difficulty of training deep feedforward neural networks, in Pro- ceedings of the Thirteenth International Conference on Artificial Intelligence and Statistics , pp. 249 (2010).
- Y. Zhang, A. M. Saxe, M. S. Advani, and A. A. Lee, Energy-entropy competition and the effectiveness of stochastic gradient descent in machine learning, Molec- ular Physics 116, 3214 (2018).
- C. M. Bishop, Neural networks for pattern recognition (Oxford University Press, Oxford, UK, 1995).
- A. Stukowski, Visualization and analysis of atomistic simulations data with ovito -the open visualization tool, Model. Simul. Mater. Sci. Eng. 18, 015012 (2010).
- P.-R. ten Wolde, M. J. Ruiz-Montero, and D. Frenkel, Numerical calculation of the rate of crystal nucleation in a lennard-jones system at moderate undercooling, J. Chem. Phys. 104, 9932 (1996).
- J. Hoshen and R. Kopelman, Percolation and cluster distribution. i. cluster multiple labeling technique and critical concentration algorithm, Phys. Rev. B 14, 3438 (1976).
- J. A. van Meel, L. Filion, C. Valeriani, and D. Frenkel, A parameter-free, solid-angle based, nearest-neighbor al- gorithm, J. Phys. Chem. 136, 234107 (2012).
- F. Saija, S. Prestipino, and P. V. Giaquinta, Scaling of local density correlations in a fluid close to freezing, J. Phys. Chem. 115, 7586 (2001).
- J.-P. Hansen and I. R. McDonald, Theory of simple liq- uids: with applications to soft matter (Academic Press, San Diego, United States, 2013).
- M. N. Bannerman, R. Sargant, and L. Lue, Dynamo: a free o(n) general event-driven molecular dynamics sim- ulator, J. Comp. Chem. 32, 3329 (2011).
- E. A. Engel, A. Anelli, M. Ceriotti, C. J. Pickard, and R. J. Needs, Mapping uncharted territory in ice from ze- olite networks to ice structures, Nat. Commun. 9, 2173 (2018).
- J. Russo, F. Romano, and H. Tanaka, New metastable form of ice and its role in the homogeneous crystalliza- tion of water, Nat. Mater. 13, 733 (2014).
- G. S. Bordonskiy and A. O. Orlov, Signatures of the ap- pearance of ice 0 in wetted nanoporous media at electro- magnetic measurements, JETP Letters 105, 492 (2017).
- B. Slater and D. Quigley, Crystal nucleation: Zeroing in on ice, Nat. Mater. 13, 670 (2014).
- A. Mujica, C. J. Pickard, and R. J. Needs, Low-energy tetrahedral polymorphs of carbon, silicon, and germa- nium, Phys. Rev. B 91, 214104 (2015).
- S. Auer and D. Frenkel, Prediction of absolute crystal- nucleation rate in hard-sphere colloids, Nature 409, 1020 (2001).
- D. Richard and T. Speck, Crystallization of hard spheres revisited. ii. thermodynamic modeling, nucleation work, and the surface of tension, The Journal of chemical physics 148, 224102 (2018).
- B. O'malley and I. Snook, Crystal nucleation in the hard sphere system, Phys. Rev. Lett. 90, 085702 (2003).
- A. V. Anikeenko and N. N. Medvedev, Polytetrahedral nature of the dense disordered packings of hard spheres, Phys. Rev. Lett. 98, 235504 (2007).
- U. Gasser, E. R. Weeks, A. Schofield, P. N. Pusey, and D. A. Weitz, Real-space imaging of nucleation and growth in colloidal crystallization, Science 292, 258 (2001).
- J. Wedekind and D. Reguera, Kinetic reconstruction of the free-energy landscape, The Journal of Physical Chemistry B 112, 11060 (2008).
- J. Russo, A. C. Maggs, D. Bonn, and H. Tanaka, The interplay of sedimentation and crystallization in hard- sphere suspensions, Soft Matter 9, 7369 (2013).
- T. Li, D. Donadio, G. Russo, and G. Galli, Homo- geneous ice nucleation from supercooled water, Phys. Chem. Chem. Phys. 13, 19807 (2011).
- D. Quigley and P. M. Rodger, Metadynamics simu- lations of ice nucleation and growth, The Journal of Chemical Physics 128, 154518 (2008).
- A. Reinhardt, J. P. K. Doye, E. G. Noya, and C. Vega, Local order parameters for use in driving homogeneous ice nucleation with all-atom models of water, The Jour- nal of Chemical Physics 137, 194504 (2012).
- A. Reinhardt and J. P. K. Doye, Note: Homogeneous tip4p/2005 ice nucleation at low supercooling, The Jour- nal of Chemical Physics 139, 096102 (2013).
- V. Bianco, P. M. de Hijes, C. P. Lamas, E. Sanz, and C. Vega, Anomalous behavior in the nucleation of ice at negative pressures, Phys. Rev. Lett. 126, 015704 (2021).
- P. G. Debenedetti, Metastable liquids: concepts and principles (Princeton University Press, Princeton, United States, 1996).
- K. Kelton and A. L. Greer, Nucleation in condensed matter: applications in materials and biology (Elsevier, 2010).
- J. D. Honeycutt and H. C. Andersen, Molecular dynam- ics study of melting and freezing of small lennard-jones clusters, J. Phys. Chem. 91, 4950 (1987).
- A. Stukowski, Structure identification methods for atomistic simulations of crystalline materials, Model. Simul. Mater. Sci. Eng. 20, 045021 (2012).
- P. M. Larsen, S. Schmidt, and J. Schiøtz, Robust struc- tural identification via polyhedral template matching, Model. Simul. Mater. Sci. Eng. 24, 055007 (2016).
- E. Maras, O. Trushin, A. Stukowski, T. Ala-Nissila, and H. Jónsson, Global transition path search for dislocation formation in ge on si(001), Comput. Phys. Commun. 205, 13 (2016).
- A. H. Nguyen and V. Molinero, Identification of clathrate hydrates, hexagonal ice, cubic ice, and liquid water in simulations: the chill+ algorithm, The Journal of Physical Chemistry B 119, 9369 (2015).
- H. Tanaka, R. Shi, H. Tong, and J. Russo, Revealing key structural features hidden in liquids and glasses, Nat. Rev. Phys. 1, 333 (2019).