Academia.eduAcademia.edu

Outline

High-density amorphous ice: A path-integral simulation

2012, The Journal of Chemical Physics

https://doi.org/10.1063/1.4750027

Abstract

Structural and thermodynamic properties of high-density amorphous (HDA) ice have been studied by path-integral molecular dynamics simulations in the isothermal-isobaric ensemble. Interatomic interactions were modeled by using the effective q-TIP4P/F potential for flexible water. Quantum nuclear motion is found to affect several observable properties of the amorphous solid. At low temperature (T = 50 K) the molar volume of HDA ice is found to increase by 6%, and the intramolecular O-H distance rises by 1.4% due to quantum motion. Peaks in the radial distribution function of HDA ice are broadened respect to their classical expectancy. The bulk modulus, B, is found to rise linearly with the pressure, with a slope ∂B/∂P = 7.1. Our results are compared with those derived earlier from classical and path-integral simulations of HDA ice. We discuss similarities and discrepancies with those earlier simulations.

References (86)

  1. D. Eisenberg and W. Kauzmann, The Structure and Prop- erties of Water (Oxford University Press, New York, 1969).
  2. V. F. Petrenko and R. W. Whitworth, Physics of Ice (Ox- ford University Press, New York, 1999).
  3. F. Franks, Water: A Matrix of Life (Royal Society of Chemistry, London, 2000), 2nd ed.
  4. G. W. Robinson, S. B. Zhu, S. Singh, and M. W. Evans, Water in Biology, Chemistry and Physics (World Scien- tific, Singapore, 1996).
  5. O. Mishima, L. D. Calvert, and E. Whalley, Nature 310, 393 (1984).
  6. O. Mishima, L. D. Calvert, and E. Whalley, Nature 314, 76 (1985).
  7. R. J. Hemley, L. C. Chen, and H. K. Mao, Nature 338, 638 (1989).
  8. C. A. Tulk, C. J. Benmore, J. Urquidi, D. D. Klug, J. Neue- feind, B. Tomberli, and P. A. Egelstaff, Science 297, 1320 (2002).
  9. R. J. Nelmes, J. S. Loveday, T. Strässle, C. L. Bull, M. Guthrie, G. Hamel, and S. Klotz, Nature Phys. 2, 414 (2006).
  10. T. Strässle, S. Klotz, G. Hamel, M. M. Koza, and H. Schober, Phys. Rev. Lett. 99, 175501 (2007).
  11. J. S. Tse, D. D. Klug, C. A. Tulk, I. Swainson, E. C. Svens- son, C. K. Loong, V. Shpakov, V. R. Belosludov, R. V. Belosludov, and Y. Kawazoe, Nature 400, 647 (1999).
  12. N. Giovambattista, H. E. Stanley, and F. Sciortino, Phys. Rev. E 72, 031510 (2005).
  13. J. S. Tse, D. D. Klug, M. Guthrie, C. A. Tulk, C. J. Ben- more, and J. Urquidi, Phys. Rev. B 71, 214107 (2005).
  14. T. Loerting and N. Giovambattista, J. Phys.: Condens. Matter 18, R919 (2006).
  15. N. E. Cusack, The Physics of Structurally Disordered Mat- ter (Adam Hilger, Bristol, 1987).
  16. S. R. Elliott, Physics of Amorphous Materials (Longman, New York, 1990).
  17. W. A. Phillips, J. Low Temp. Phys. 7, 351 (1972).
  18. P. W. Anderson, B. I. Halperin, and C. M. Varma, Phil. Mag. 25, 1 (1972).
  19. M. A. Ramos and U. Buchenau, in Tunneling Systems in Amorphous and Crystalline Solids, edited by P. Esquinazi (Springer, Berlin, 1998), p. 527.
  20. C. P. Herrero, Europhys. Lett. 44, 734 (1998).
  21. H. Gai, G. K. Schenter, and B. C. Garrett, Phys. Rev. B 54, 14873 (1996).
  22. I. Okabe, H. Tanaka, and K. Nakanishi, Phys. Rev. E 53, 2638 (1996).
  23. N. Giovambattista, C. A. Angell, F. Sciortino, and H. E. Stanley, Phys. Rev. Lett. 93, 047801 (2004).
  24. M. Seidl, T. Loerting, and G. Zifferer, J. Chem. Phys. 131, 114502 (2009).
  25. J. A. Barker and R. O. Watts, Chem. Phys. Lett. 3, 144 (1969).
  26. A. Rahman and F. H. Stillinger, J. Chem. Phys. 55, 3336 (1971).
  27. M. W. Mahoney and W. L. Jorgensen, J. Chem. Phys. 115, 10758 (2001).
  28. Y. Koyama, H. Tanaka, G. Gao, and X. C. Zeng, J. Chem. Phys. 121, 7926 (2004).
  29. W. L. Jorgensen and J. Tirado-Rives, PNAS 102, 6665 (2005).
  30. J. L. F. Abascal and C. Vega, J. Chem. Phys. 123, 234505 (2005).
  31. F. Paesani, W. Zhang, D. A. Case, T. E. Cheatham, and G. A. Voth, J. Chem. Phys. 125, 184507 (2006).
  32. C. McBride, C. Vega, E. G. Noya, R. Ramírez, and L. M. Sesé, J. Chem. Phys. 131, 024506 (2009).
  33. M. A. Gonzalez and J. L. F. Abascal, J. Chem. Phys. 135, 224516 (2011).
  34. B. Chen, I. Ivanov, M. L. Klein, and M. Parrinello, Phys. Rev. Lett. 91, 215503 (2003).
  35. M. V. Fernández-Serra and E. Artacho, Phys. Rev. Lett. 96, 016404 (2006).
  36. J. A. Morrone and R. Car, Phys. Rev. Lett. 101, 017801 (2008).
  37. S. Yoo, X. C. Zeng, and S. S. Xantheas, J. Chem. Phys. 130, 221102 (2009).
  38. J. Wang, G. Roman-Perez, J. M. Soler, E. Artacho, and M. V. Fernandez-Serra, J. Chem. Phys. 134, 024516 (2011).
  39. B. Kolb and T. Thonhauser, Phys. Rev. B 84, 045116 (2011).
  40. O. Akin-Ojo and F. Wang, Chem. Phys. Lett. 513, 59 (2011).
  41. B. Pamuk, J. M. Soler, R. Ramírez, C. P. Herrero, P. W. Stephens, P. B. Allen, and M. V. Fernández-Serra, Phys. Rev. Lett. 108, 193003 (2012).
  42. M. J. Gillan, Phil. Mag. A 58, 257 (1988).
  43. D. M. Ceperley, Rev. Mod. Phys. 67, 279 (1995).
  44. R. Martonák, D. Donadio, and M. Parrinello, J. Chem. Phys. 122, 134501 (2005).
  45. D. T. Bowron, J. L. Finney, A. Hallbrucker, I. Kohl, T. Lo- erting, E. Mayer, and A. K. Soper, J. Chem. Phys. 125, 194502 (2006).
  46. T. Loerting, K. Winkel, M. Seidl, M. Bauer, C. Mitterdor- fer, P. H. Handle, C. G. Salzmann, E. Mayer, J. L. Finney, and D. T. Bowron, Phys. Chem. Chem. Phys. 13, 8783 (2011).
  47. S. Habershon, T. E. Markland, and D. E. Manolopoulos, J. Chem. Phys. 131, 024501 (2009).
  48. S. Habershon and D. E. Manolopoulos, Phys. Chem. Chem. Phys. 13, 19714 (2011).
  49. R. Ramírez and C. P. Herrero, Phys. Rev. B 84, 064130 (2011).
  50. R. Ramírez and C. P. Herrero, J. Chem. Phys. 133, 144511 (2010).
  51. C. P. Herrero and R. Ramírez, J. Chem. Phys. 134, 094510 (2011).
  52. S. Habershon and D. E. Manolopoulos, J. Chem. Phys. 135, 224111 (2011).
  53. J. Urquidi, C. J. Benmore, J. Neuefeind, B. Tomberli, C. A. Tulk, M. Guthrie, P. A. Egelstaff, and D. D. Klug, J. Phys.: Condens. Matter 15, 3657 (2003).
  54. T. E. Markland, J. A. Morrone, B. J. Berne, K. Miyazaki, E. Rabani, and D. R. Reichman, Nature Phys. 7, 134 (2011).
  55. R. P. Feynman, Statistical Mechanics (Addison-Wesley, New York, 1972).
  56. H. Kleinert, Path Integrals in Quantum Mechanics, Statis- tics and Polymer Physics (World Scientific, Singapore, 1990).
  57. G. J. Martyna, M. E. Tuckerman, D. J. Tobias, and M. L. Klein, Mol. Phys. 87, 1117 (1996).
  58. M. E. Tuckerman and A. Hughes, in Classical and Quan- tum Dynamics in Condensed Phase Simulations, edited by B. J. Berne, G. Ciccotti, and D. F. Coker (Word Scientific, Singapore, 1998), p. 311.
  59. M. E. Tuckerman, in Quantum Simulations of Complex Many-Body Systems: From Theory to Algorithms, edited by J. Grotendorst, D. Marx, and A. Muramatsu (NIC, FZ Jülich, 2002), p. 269.
  60. V. Buch, P. Sandler, and J. Sadlej, J. Phys. Chem. B 102, 8641 (1998).
  61. B. S. Gonzalez, E. G. Noya, C. Vega, and L. M. Sese, J. Phys. Chem. B 114, 2484 (2010).
  62. L. Hernández de la Peña, M. S. Gulam Razul, and P. G. Kusalik, J. Chem. Phys. 123, 144506 (2005).
  63. T. F. Miller and D. E. Manolopoulos, J. Chem. Phys. 123, 154504 (2005).
  64. L. Hernández de la Peña and P. G. Kusalik, J. Chem. Phys. 125, 054512 (2006).
  65. J.-Y. Chen and C.-S. Yoo, Proc. Nat. Acad. Sci. USA 108, 7685 (2011).
  66. R. Martonák, D. Donadio, and M. Parrinello, Phys. Rev. Lett. 92, 225702 (2004).
  67. C. P. Herrero and R. Ramirez, Phys. Rev. B 84, 224112 (2011).
  68. D. Chandler, Introduction to modern statistical mechanics (Oxford University Press, Oxford, 1987).
  69. G. P. Johari and O. Andersson, Phys. Rev. B 76, 134103 (2007).
  70. E. Libowitzky, Monatshefte für Chemie 130, 1047 (1999).
  71. K. Nygård, M. Hakala, S. Manninen, A. Andrejczuk, M. Itou, Y. L. G. M. Pettersson, and K. Hämäläinen, Phys. Rev. E 74, 031503 (2006).
  72. C. G. Salzmann, T. Loerting, S. Klotz, P. W. Mirwald, A. Hallbrucker, and E. Mayer, Phys. Chem. Chem. Phys. 8, 386 (2006).
  73. E. Whalley, Can. J. Chem. 55, 3429 (1977).
  74. L. Ojamäe and K. Hermansson, J. Chem. Phys. 96, 9035 (1992).
  75. M. C. Bellissent-Funel, J. Teixeira, and L. Bosio, J. Chem. Phys. 87, 2231 (1987).
  76. J. L. Finney, D. T. Bowron, A. K. Soper, T. Loerting, E. Mayer, and A. Hallbrucker, Phys. Rev. Lett. 89, 205503 (2002).
  77. J. L. Finney, A. Hallbrucker, I. Kohl, A. K. Soper, and D. T. Bowron, Phys. Rev. Lett. 88, 225503 (2002).
  78. L. Bosio, G. P. Johari, and J. Teixeira, Phys. Rev. Lett. 56, 460 (1986).
  79. M. F. Herman, E. J. Bruskin, and B. J. Berne, J. Chem. Phys. 76, 5150 (1982).
  80. R. Ramírez, N. Neuerburg, M. V. Fernández-Serra, and C. P. Herrero, J. Chem. Phys. 137, 044502 (2012).
  81. L. D. Landau and E. M. Lifshitz, Statistical Physics (Perg- amon, Oxford, 1980), 3rd ed.
  82. C. P. Herrero, J. Phys.: Condens. Matter 20, 295230 (2008).
  83. C. P. Herrero and R. Ramírez, Phys. Rev. B 63, 024103 (2000).
  84. F. Sciortino, U. Essmann, H. E. Stanley, M. Hemmati, J. Shao, G. H. Wolf, and C. A. Angell, Phys. Rev. E 52, 6484 (1995).
  85. J. S. Tse and M. L. Klein, Phys. Rev. Lett. 58, 1672 (1987).
  86. J. S. Tse and M. L. Klein, J. Chem. Phys. 92, 3992 (1990).