Dimensional lower bounds for contact surfaces of Cheeger sets
2021, Journal de Mathématiques Pures et Appliquées
https://doi.org/10.1016/J.MATPUR.2021.11.010Abstract
We carry out an analysis of the size of the contact surface between a Cheeger set E and its ambient space Ω ⊂ R d . By providing bounds on the Hausdorff dimension of the contact surface ∂E ∩ ∂Ω, we show a fruitful interplay between this size itself and the regularity of the boundaries. Eventually, we obtain sufficient conditions to infer that the contact surface has positive (d -1) dimensional Hausdorff measure. Finally we prove by explicit examples in two dimensions that such bounds are optimal.
References (50)
- A. D. Alexandrov. A characteristic property of spheres. Annali di Matematica Pura ed Applicata, 58(1):303-315, 1962.
- L. Ambrosio, A. Carlotto, and A. Massaccesi. Lectures on Elliptic Partial Differential Equations, volume 18. Springer, 2019.
- L. Ambrosio, N. Fusco, and D. Pallara. Functions of bounded variation and free discontinuity problems. Oxford Mathe- matical Monographs. The Clarendon Press, Oxford University Press, New York, 2000.
- D. Bucur and I. Fragalà. A faber-krahn inequality for the cheeger constant of n-gons. The Journal of Geometric Analysis, 26(1):88-117, 2016.
- D. Bucur, I. Fragalà, B. Velichkov, and G. Verzini. On the honeycomb conjecture for a class of minimal convex partitions. Transactions of the American Mathematical Society, 370(10):7149-7179, 2018.
- G. Buttazzo, G. Carlier, and M. Comte. On the selection of maximal cheeger sets. Differential and Integral Equations, 20(9):991-1004, 2007.
- S. Campanato. Proprietà di hölderianità di alcune classi di funzioni. Annali della Scuola Normale Superiore di Pisa-Classe di Scienze, 17(1-2):175-188, 1963.
- M. Caroccia. Cheeger n-clusters. Calculus of Variations and Partial Differential Equations, 56(2):30, 2017.
- M. Caroccia and S. Littig. The cheeger n-problem in terms of bv functions. Journal of Convex Analysis, 2017.
- M. Caroccia and R. Neumayer. A note on the stability of the cheeger constant of n-gons. Journal of Convex Analysis, 22(4):1207-1213, 2015.
- V. Caselles, A. Chambolle, and M. Novaga. Uniqueness of the cheeger set of a convex body. Pacific J. Math., 232(1):77-90, 2007.
- V. Caselles, A. Chambolle, and M. Novaga. Some remarks on uniqueness and regularity of cheeger sets. Rend. Semin. Mat. Univ. Padova, 123:191-201, 2010.
- A. Cañete. Cheeger sets for rotationally symmetric planar convex bodies. Preprint 2021.
- J. Cheeger. The relation between the laplacian and the diameter for manifolds of non-negative curvature. Archiv der Mathematik, 19(5):558-560, 1968.
- J. Cheeger. A lower bound for the smallest eigenvalue of the laplacian. In Proceedings of the Princeton conference in honor of Professor S. Bochner, pages 195-199, 1969.
- E. De Giorgi. Su una teoria generale della misura (r -1)-dimensionale in uno spazio ad r-dimensioni. Ann. Mat. Pura Appl. (4), 36:191-213, 1954.
- E.)
- De Giorgi. Nuovi teoremi relativi alle misure (r -1)-dimensionali in uno spazio ad r dimensioni. Selected papers, Ennio De Giorgi, page 128, 1955.
- E. de Giorgi. Sulla differenziabilità e l'analiticità delle estremali degli integrali multipli regolari. Matematika, 4(6):23-38, 1960.
- E. De Giorgi and G. Stampacchia. Removable singularities of minimal hypersurfaces. Selected papers, Ennio De Giorgi, page 278.
- E. De Giorgi and G. Stampacchia. Sulle singolarità eliminabili delle ipersuperficie minimali. Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur.(8), 38:352-357, 1965.
- T. De Pauw and W. F. Pfeffer. The gauss-green theorem and removable sets for pdes in divergence form. Advances in Mathematics, 183(1):155-182, 2004.
- M. G. Delgadino and F. Maggi. Alexandrov's theorem revisited. Anal. PDE, 12(6):1613-1642, 2019.
- K. Falconer. Fractal geometry: mathematical foundations and applications. John Wiley & Sons, 2004.
- K. J. Falconer. Techniques in fractal geometry. John Wiley and Sons, Ltd., Chichester, 1997.
- G. Figueiredo and A. Suarez. Existence of positive solutions for prescribed mean curvature problems with nonlocal term via sub-and supersolution method. Mathematical Methods in the Applied Sciences, 43(15):8496-8505, 2020.
- M. Giaquinta. Remarks on the regularity of weak solutions to some variational inequalities. Mathematische Zeitschrift, 177(1):15-31, 1981.
- E. Gonzalez, U. Massari, and I. Tamanini. Minimal boundaries enclosing a given volume. Manuscripta mathematica, 34(2-3):381-395, 1981.
- F. Jones. Lebesgue integration on Euclidean space. Jones & Bartlett Learning, 2001.
- B. Kawohl and M. Novaga. The p-laplace eigenvalue problem as p→ 1 and cheeger sets in a finsler metric. Journal of Convex Analysis, 15(3):623-634, 2008.
- G. P. Leonardi. An overview on the cheeger problem. In New trends in shape optimization, pages 117-139. Springer, 2015.
- G. P. Leonardi, R. Neumayer, and G. Saracco. The cheeger constant of a jordan domain without necks. Calculus of Variations and Partial Differential Equations, 56(6):164, 2017.
- G. P. Leonardi and A. Pratelli. On the cheeger sets in strips and non-convex domains. Calculus of Variations and Partial Differential Equations, 55(1):15, 2016.
- G. P. Leonardi and G. Saracco. The prescribed mean curvature equation in weakly regular domains. Nonlinear Differential Equations and Applications NoDEA, 25(2):9, 2018.
- G. P. Leonardi and G. Saracco. Two examples of minimal cheeger sets in the plane. Annali di Matematica Pura ed Applicata (1923-), 197(5):1511-1531, 2018.
- G. P Leonardi and G. Saracco. Minimizers of the prescribed curvature functional in a jordan domain with no necks. ESAIM Control Optim. Calc. Var., 26:76, 2020.
- G.P. Leonardi and G. Saracco. Rigidity and trace properties of divergence-measure vector fields. Adv. Calc. Var., 2020.
- F. Maggi. Sets of finite perimeter and geometric variational problems, volume 135 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge, 2012. An introduction to geometric measure theory.
- M. Miranda. Frontiere minimali con ostacoli. Annali dell'Universita di Ferrara, 16(1):29-37, 1971.
- E. Parini. An introduction to the cheeger problem. Surv. Math. Appl., 6:9-21, 2011.
- A. V. Pokrovskii. Removable singularities of p-harmonic functions. Differential Equations, 41(7):941-952, 2005.
- A. V. Pokrovskii. Removable singularities of solutions of second-order divergence-form elliptic equations. Mathematical Notes, 77(3-4):391-399, 2005.
- A. V. Pokrovskii. Removable singularities of solutions of the minimal surface equation. Functional Analysis and Its Applications, 39(4):296-300, 2005.
- A. V. Pokrovskii. Removable singularities of solutions of elliptic equations. Journal of Mathematical Sciences, 160(1):61-83, 2009.
- A. C. Ponce. Singularities of the divergence of continuous vector fields and uniform hausdorff estimates. Indiana University Mathematics Journal, pages 1055-1074, 2013.
- J. Serrin. Isolated singularities of solutions of quasi-linear equations. Acta Mathematica, 113:219-240, 1965.
- J. Serrin. Removable singularities of solutions of elliptic equations. ii. Archive for Rational Mechanics and Analysis, 20(3):163-169, 1965.
- L. Simon. On a theorem of de giorgi and stampacchia. Mathematische Zeitschrift, 155(2):199-204, 1977.
- P. Sternberg and K. Zumbrun. On the connectivity of boundaries of sets minimizing perimeter subject to a volume constraint. Communications in Analysis and Geometry, 7(1):199-220, 1999.
- Dipartimento di matematica, Politecnico di Milano Piazza Leonardo da Vinci 32, 20133 Milano (Mi) Email address: marco.caroccia@polimi.it