Academia.eduAcademia.edu

Outline

Dimensional lower bounds for contact surfaces of Cheeger sets

2021, Journal de Mathématiques Pures et Appliquées

https://doi.org/10.1016/J.MATPUR.2021.11.010

Abstract

We carry out an analysis of the size of the contact surface between a Cheeger set E and its ambient space Ω ⊂ R d . By providing bounds on the Hausdorff dimension of the contact surface ∂E ∩ ∂Ω, we show a fruitful interplay between this size itself and the regularity of the boundaries. Eventually, we obtain sufficient conditions to infer that the contact surface has positive (d -1) dimensional Hausdorff measure. Finally we prove by explicit examples in two dimensions that such bounds are optimal.

References (50)

  1. A. D. Alexandrov. A characteristic property of spheres. Annali di Matematica Pura ed Applicata, 58(1):303-315, 1962.
  2. L. Ambrosio, A. Carlotto, and A. Massaccesi. Lectures on Elliptic Partial Differential Equations, volume 18. Springer, 2019.
  3. L. Ambrosio, N. Fusco, and D. Pallara. Functions of bounded variation and free discontinuity problems. Oxford Mathe- matical Monographs. The Clarendon Press, Oxford University Press, New York, 2000.
  4. D. Bucur and I. Fragalà. A faber-krahn inequality for the cheeger constant of n-gons. The Journal of Geometric Analysis, 26(1):88-117, 2016.
  5. D. Bucur, I. Fragalà, B. Velichkov, and G. Verzini. On the honeycomb conjecture for a class of minimal convex partitions. Transactions of the American Mathematical Society, 370(10):7149-7179, 2018.
  6. G. Buttazzo, G. Carlier, and M. Comte. On the selection of maximal cheeger sets. Differential and Integral Equations, 20(9):991-1004, 2007.
  7. S. Campanato. Proprietà di hölderianità di alcune classi di funzioni. Annali della Scuola Normale Superiore di Pisa-Classe di Scienze, 17(1-2):175-188, 1963.
  8. M. Caroccia. Cheeger n-clusters. Calculus of Variations and Partial Differential Equations, 56(2):30, 2017.
  9. M. Caroccia and S. Littig. The cheeger n-problem in terms of bv functions. Journal of Convex Analysis, 2017.
  10. M. Caroccia and R. Neumayer. A note on the stability of the cheeger constant of n-gons. Journal of Convex Analysis, 22(4):1207-1213, 2015.
  11. V. Caselles, A. Chambolle, and M. Novaga. Uniqueness of the cheeger set of a convex body. Pacific J. Math., 232(1):77-90, 2007.
  12. V. Caselles, A. Chambolle, and M. Novaga. Some remarks on uniqueness and regularity of cheeger sets. Rend. Semin. Mat. Univ. Padova, 123:191-201, 2010.
  13. A. Cañete. Cheeger sets for rotationally symmetric planar convex bodies. Preprint 2021.
  14. J. Cheeger. The relation between the laplacian and the diameter for manifolds of non-negative curvature. Archiv der Mathematik, 19(5):558-560, 1968.
  15. J. Cheeger. A lower bound for the smallest eigenvalue of the laplacian. In Proceedings of the Princeton conference in honor of Professor S. Bochner, pages 195-199, 1969.
  16. E. De Giorgi. Su una teoria generale della misura (r -1)-dimensionale in uno spazio ad r-dimensioni. Ann. Mat. Pura Appl. (4), 36:191-213, 1954.
  17. E.)
  18. De Giorgi. Nuovi teoremi relativi alle misure (r -1)-dimensionali in uno spazio ad r dimensioni. Selected papers, Ennio De Giorgi, page 128, 1955.
  19. E. de Giorgi. Sulla differenziabilità e l'analiticità delle estremali degli integrali multipli regolari. Matematika, 4(6):23-38, 1960.
  20. E. De Giorgi and G. Stampacchia. Removable singularities of minimal hypersurfaces. Selected papers, Ennio De Giorgi, page 278.
  21. E. De Giorgi and G. Stampacchia. Sulle singolarità eliminabili delle ipersuperficie minimali. Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur.(8), 38:352-357, 1965.
  22. T. De Pauw and W. F. Pfeffer. The gauss-green theorem and removable sets for pdes in divergence form. Advances in Mathematics, 183(1):155-182, 2004.
  23. M. G. Delgadino and F. Maggi. Alexandrov's theorem revisited. Anal. PDE, 12(6):1613-1642, 2019.
  24. K. Falconer. Fractal geometry: mathematical foundations and applications. John Wiley & Sons, 2004.
  25. K. J. Falconer. Techniques in fractal geometry. John Wiley and Sons, Ltd., Chichester, 1997.
  26. G. Figueiredo and A. Suarez. Existence of positive solutions for prescribed mean curvature problems with nonlocal term via sub-and supersolution method. Mathematical Methods in the Applied Sciences, 43(15):8496-8505, 2020.
  27. M. Giaquinta. Remarks on the regularity of weak solutions to some variational inequalities. Mathematische Zeitschrift, 177(1):15-31, 1981.
  28. E. Gonzalez, U. Massari, and I. Tamanini. Minimal boundaries enclosing a given volume. Manuscripta mathematica, 34(2-3):381-395, 1981.
  29. F. Jones. Lebesgue integration on Euclidean space. Jones & Bartlett Learning, 2001.
  30. B. Kawohl and M. Novaga. The p-laplace eigenvalue problem as p→ 1 and cheeger sets in a finsler metric. Journal of Convex Analysis, 15(3):623-634, 2008.
  31. G. P. Leonardi. An overview on the cheeger problem. In New trends in shape optimization, pages 117-139. Springer, 2015.
  32. G. P. Leonardi, R. Neumayer, and G. Saracco. The cheeger constant of a jordan domain without necks. Calculus of Variations and Partial Differential Equations, 56(6):164, 2017.
  33. G. P. Leonardi and A. Pratelli. On the cheeger sets in strips and non-convex domains. Calculus of Variations and Partial Differential Equations, 55(1):15, 2016.
  34. G. P. Leonardi and G. Saracco. The prescribed mean curvature equation in weakly regular domains. Nonlinear Differential Equations and Applications NoDEA, 25(2):9, 2018.
  35. G. P. Leonardi and G. Saracco. Two examples of minimal cheeger sets in the plane. Annali di Matematica Pura ed Applicata (1923-), 197(5):1511-1531, 2018.
  36. G. P Leonardi and G. Saracco. Minimizers of the prescribed curvature functional in a jordan domain with no necks. ESAIM Control Optim. Calc. Var., 26:76, 2020.
  37. G.P. Leonardi and G. Saracco. Rigidity and trace properties of divergence-measure vector fields. Adv. Calc. Var., 2020.
  38. F. Maggi. Sets of finite perimeter and geometric variational problems, volume 135 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge, 2012. An introduction to geometric measure theory.
  39. M. Miranda. Frontiere minimali con ostacoli. Annali dell'Universita di Ferrara, 16(1):29-37, 1971.
  40. E. Parini. An introduction to the cheeger problem. Surv. Math. Appl., 6:9-21, 2011.
  41. A. V. Pokrovskii. Removable singularities of p-harmonic functions. Differential Equations, 41(7):941-952, 2005.
  42. A. V. Pokrovskii. Removable singularities of solutions of second-order divergence-form elliptic equations. Mathematical Notes, 77(3-4):391-399, 2005.
  43. A. V. Pokrovskii. Removable singularities of solutions of the minimal surface equation. Functional Analysis and Its Applications, 39(4):296-300, 2005.
  44. A. V. Pokrovskii. Removable singularities of solutions of elliptic equations. Journal of Mathematical Sciences, 160(1):61-83, 2009.
  45. A. C. Ponce. Singularities of the divergence of continuous vector fields and uniform hausdorff estimates. Indiana University Mathematics Journal, pages 1055-1074, 2013.
  46. J. Serrin. Isolated singularities of solutions of quasi-linear equations. Acta Mathematica, 113:219-240, 1965.
  47. J. Serrin. Removable singularities of solutions of elliptic equations. ii. Archive for Rational Mechanics and Analysis, 20(3):163-169, 1965.
  48. L. Simon. On a theorem of de giorgi and stampacchia. Mathematische Zeitschrift, 155(2):199-204, 1977.
  49. P. Sternberg and K. Zumbrun. On the connectivity of boundaries of sets minimizing perimeter subject to a volume constraint. Communications in Analysis and Geometry, 7(1):199-220, 1999.
  50. Dipartimento di matematica, Politecnico di Milano Piazza Leonardo da Vinci 32, 20133 Milano (Mi) Email address: marco.caroccia@polimi.it