Academia.eduAcademia.edu

Outline

Surfaces with high contact number and their characterization

2006, Annali di Matematica Pura ed Applicata

https://doi.org/10.1007/S10231-005-0169-1

Abstract

The notion of contact number c # (M) of a Euclidean submanifold was introduced in an earlier article (Proc. Edinb. Math. Soc. 47:69-100, 2004) as the highest order of contact of geodesics and normal sections on the submanifold. It was proved in (Proc. Edinb. Math. Soc. 47:69-100, 2004) that the contact number relates closely with the notions of isotropic submanifolds and holomorphic curves. One important problem concerning contact number is to construct Euclidean submanifolds with high contact number. The purpose of this article is thus to construct Euclidean surfaces with high contact number and to provide simple geometric characterization of such surfaces.

References (11)

  1. Arslan, K., West, A.: Non-spherical submanifolds with pointwise 2-planar normal sections. Bull. Lond. Math. Soc. 28, 88-92 (1996)
  2. Chen, B.-Y.: Geometry of submanifolds. M. Dekker, New York (1973)
  3. Chen, B.-Y.: Differential geometry of submanifolds with planar normal sections. Ann. Mat. Pura Appl. 130, 59-66 (1982)
  4. Chen, B.-Y., Li, S.-J.: The contact number of a Euclidean submanifold. Proc. Edinb. Math. Soc. 47, 69-100 (2004)
  5. Chen, B.-Y., Verheyen, P.: Submanifolds with geodesic normal sections. Math. Ann. 269, 417-429 (1984)
  6. Dal Lago, W., García, A.N., Sánchez, C.U.: Maximal projective subspaces in the variety of planar normal sections of a flag manifold. Geom. Dedicata 75, 219-233 (1999)
  7. Dal Lago, W., García, A.N., Sánchez, C.U.: Planar normal sections on the natural imbedding of a flag manifold. Geom. Dedicata 53, 223-235 (1994)
  8. Deprez, J., Verheyen, P., Verstraelen, L.: Higher-dimensional normal sections. An. S ¸tiint ¸. Univ. Al. I. Cuza Ias ¸i Sect ¸. I a Mat. 31, 255-259 (1985)
  9. O'Neill, B.: Isotropic and Kaehler submanifolds. Can. J. Math. 17, 907-915 (1965)
  10. Sánchez, C.U., García, A.N., Dal Lago, W.: Planar normal sections on the natural embed- ding of a real flag manifold. Beiträge Algebra Geom. 41, 513-530 (2000)
  11. Verheyen, P.: Submanifolds with geodesic normal sections are helical. Rend. Sem. Mat. Univ. Polit. Torino 43, 511-527 (1985)