Academia.eduAcademia.edu

Outline

On contact graphs of totally separable packings in low dimensions

Advances in Applied Mathematics

https://doi.org/10.1016/J.AAM.2018.08.003

Abstract

The contact graph of a packing of translates of a convex body in Euclidean d-space E d is the simple graph whose vertices are the members of the packing, and whose two vertices are connected by an edge if the two members touch each other. A packing of translates of a convex body is called totally separable, if any two members can be separated by a hyperplane in E d disjoint from the interior of every packing element. We give upper bounds on the maximum vertex degree (called separable Hadwiger number) and the maximum number of edges (called separable contact number) of the contact graph of a totally separable packing of n translates of an arbitrary smooth convex body in E d with d = 2, 3, 4. In the proofs, linear algebraic and convexity methods are combined with volumetric and packing density estimates based on the underlying isoperimetric (resp., reverse isoperimetric) inequality.

References (23)

  1. K. Ball, Volume ratios and a reverse isoperimetric inequality, J. London Math. Soc. (2) 44 (1991), no. 2, 351-359.
  2. K. Bezdek, On the maximum number of touching pairs in a finite packing of translates of a convex body, J. Combin. Theory Ser. A 98 (2002), no. 1, 192-200.
  3. K. Bezdek and P. Brass, On k + -neighbour packings and one-sided Hadwiger configurations, Beiträge Algebra Geom. 44 (2003), no. 2, 493-498.
  4. K. Bezdek, M. Khan, and M. Oliwa, On contact graphs of totally separable domains, arXiv:1703.08568 [math] (2017).
  5. K. Bezdek and Zs. Lángi, Minimizing the mean projections of finite ρ-separable packings, Monatsh. Math. (published online) https://doi.org/10.1007/s00605-018-1166-y.
  6. K. Bezdek, B. Szalkai, and I. Szalkai, On contact numbers of totally separable unit sphere packings, Discrete Math. 339 (2016), no. 2, 668-676.
  7. P. Boyvalenkov, S. Dodunekov, and O. Musin, A survey on the kissing numbers, Serdica Math. J. 38 (2012), no. 4, 507-522.
  8. L. Danzer and B. Grünbaum, Über zwei Probleme bezüglich konvexer Körper von P. Erdős und von V. L. Klee, Math. Z. 79 (1962), 95-99.
  9. H. Davenport and Gy. Hajós, Problem 35, Mat. Lapok 2 (1951), 68.
  10. G. Fejes Tóth and L. Fejes Tóth, On totally separable domains, Acta Math. Acad. Sci. Hungar. 24 (1973), 229-232.
  11. H. Groemer, Abschätzungen für die Anzahl der konvexen Körper, die einen konvexen Körper berühren, Monatsh. Math. 65 (1961), 74-81.
  12. H. Hadwiger, Über Treffanzahlen bei translationsgleichen Eikörpern, Arch. Math. 8 (1957), 212-213.
  13. G. Kertész, On totally separable packings of equal balls, Acta Math. Hungar. 51 (1988), no. 3-4, 363-364.
  14. W. Kuperberg, Optimal arrangements in packing congruent balls in a spherical container, Discrete Comput. Geom. 37 (2007), no. 2, 205-212.
  15. H. Minkowski, Dichteste gitterförmige Lagerung kongruenter Körper, Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen, Mathematisch-Physikalische Klasse 1904 (1904), 311- 355.
  16. O. Musin, The kissing number in four dimensions, Ann. of Math. (2) 168 (2008), no. 1, 1-32.
  17. A. M. Odlyzko and N. J. A. Sloane, New bounds on the number of unit spheres that can touch a unit sphere in n dimensions, J. Combin. Theory Ser. A 26 (1979), no. 2, 210-214.
  18. R. A. Rankin, The closest packing of spherical caps in n dimensions, Proc. Glasgow Math. Assoc. 2 (1955), 139-144.
  19. J. R. Reay, Generalizations of a theorem of Carathéodory, Mem. Amer. Math. Soc. 54 (1965), 50.
  20. K. Schütte and B. L. van der Waerden, Das Problem der dreizehn Kugeln, Math. Ann. 125 (1953), 325-334.
  21. E. Steinitz, Bedingt konvergente Reihen und konvexe Systeme, J. Reine Angew. Math. 143 (1913), 128-176.
  22. I. Talata, Exponential lower bound for the translative kissing numbers of d-dimensional convex bodies, Discrete Comput. Geom. 19 (1998), no. 3, 447-455.
  23. K.B.) Department of Mathematics and Statistics, University of Calgary, Canada.