Academia.eduAcademia.edu

Outline

Carbon nanotube thin film transistors based on aerosol methods

2009, Nanotechnology

https://doi.org/10.1088/0957-4484/20/8/085201

Abstract

We demonstrate a fabrication method for high-performance field-effect transistors (FETs) based on dry-processed random single-walled carbon nanotube networks (CNTNs) deposited at room temperature. This method is an advantageous alternative to solution-processed and direct CVD grown CNTN FETs, which allows using various substrate materials, including heat-intolerant plastic substrates, and enables an efficient, density-controlled, scalable deposition of as-produced single-walled CNTNs on the substrate directly from the aerosol (floating catalyst) synthesis reactor. Two types of thin film transistor (TFT) structures were fabricated to evaluate the FET performance of dry-processed CNTNs: bottom-gate transistors on Si/SiO 2 substrates and top-gate transistors on polymer substrates. Devices exhibited on/off ratios up to 10 5 and field-effect mobilities up to 4 cm 2 V -1 s -1 . The suppression of hysteresis in the bottom-gate device transfer characteristics by means of thermal treatment in vacuum and passivation by an atomic layer deposited Al 2 O 3 film was investigated. A 32 nm thick Al 2 O 3 layer was found to be able to eliminate the hysteresis.

References (43)

  1. Klauk H 2006 Organic Electronics: Materials, Manufacturing and Applications (Weinheim: Wiley-VCH)
  2. Singh T B and Sariciftci N S 2006 Annu. Rev. Mater. Res. 36 199
  3. Ong B S, Wu Y, Li Y, Liu P and Pan H 2008 Chem. Eur. J. 14 4766
  4. Snow E S, Novak J P, Campbell P M and Park D 2003 Appl. Phys. Lett. 82 2145
  5. Novak J P, Lay M D, Perkins F K and Snow E S 2004 Solid-State Electron. 48 1753
  6. Gruner G 2006 J. Mater. Chem. 16 3533
  7. Hu L, Hecht D S and Grüner G 2004 Nano Lett. 4 2513
  8. Song Y I, Yang C M, Kim D Y, Kanoh H and Kaneko K 2008 J. Colloid Interface Sci. 318 365
  9. Soliveres S, Gyani J, Delseny C, Hoffmann A and Pascal F 2007 Appl. Phys. Lett. 90 082107
  10. LeMieux M C, Roberts M, Barman S, Jin Y W, Kim J M and Bao Z 2008 Science 321 101
  11. Lim C, Min D H and Lee S B 2007 Appl. Phys. Lett. 91 243117
  12. Trancik J E, Barton S C and Hone J 2008 Nano Lett. 8 982
  13. Boccaccini A R, Cho J, Roether J A, Thomas B J C, Minay E J and Shaffer M S P 2006 Carbon 44 3149
  14. Vaisman L, Wagner D and Marom G 2006 Adv. Colloid Interface Sci. 37 128-30
  15. Tasis D, Tagmatarchis N, Georgakilas V and Prato M 2003 Chem. Eur. J. 9 4000
  16. Lay M D, Novak J P and Snow E S 2004 Nano Lett. 4 603
  17. Pénicaud A et al 2007 Compos. Sci. Technol. 67 795
  18. Andrade M J, Lima M D, Skakalova V, Bergmann C P and Roth S 2007 Phys. Status Solidi 1 178
  19. Gonzalez D, Nasibulin A G, Shandakov S D, Jiang H, Queipo P, Anisimov A S, Tsuneta T and Kauppinen E I 2006 Chem. Mater. 18 5052
  20. Nasibulin A G, Shandakov S D, Anisimov A S, Gonzalez D, Jiang H, Pudas M, Queipo P and Kauppinen E I 2008 J. Phys. Chem. 112 5762
  21. Moisala A, Nasibulin A G, Shandakov S D, Jiang H and Kauppinen E I 2005 Carbon 43 2066
  22. Nasibulin A G, Moisala A, Brown D P, Jiang H and Kauppinen E I 2005 Chem. Phys. Lett. 402 227
  23. Nasibulin A G, Brown D P, Queipo P, Gonzalez D, Jiang H and Kauppinen E I 2006 Chem. Phys. Lett. 417 179
  24. Moisala A, Nasibulin A G, Brown D P, Jiang H, Khriachtchev L and Kauppinen E I 2006 Chem. Eng. Sci. 61 4393
  25. Nasibulin A G, Queipo P, Shandakov S D, Brown D P, Jiang H, Pikhitsa P V, Tolochko O V and Kauppinen E I 2006 J. Nanosci. Nanotechnol. 6 1233
  26. Krinke T G, Deppert K, Magnusson M H, Schmidt F and Fissan H 2002 J. Aerosol Sci. 33 1341
  27. Grigoras K, Franssila S and Airaksinen V-M 2008 Thin Solid Films 516 5552
  28. Snow E S, Campbell P M, Ancona M G and Novak J P 2005 Appl. Phys. Lett. 86 033105
  29. Kocabas C, Pimparkar N, Yesilyurt O, Kang S J, Alam M A and Rogers J A 2007 Nano Lett. 7 1195
  30. Pimparkar N, Cao Q, Kumar S, Murthy J Y, Rogers J and Alam M A 2007 IEEE Elecron Device Lett. 28 157
  31. Kim W, Javey A, Vermesh O, Wang Q, Li Y and Dai H 2003 Nano Lett. 3 193
  32. Tsukagoshi K, Sekiguchi M, Aoyagi Y, Kanbara T, Takenobu T and Iwasa Y 2007 Japan. J. Appl. Phys. 46 L571
  33. Kamimura T and Matsumoto K 2004 IEICE Trans. Electron. E87-C 1795
  34. Mizutani T, Iwatsuki S, Ohno Y and Kishimoto S 2005 Japan. J. Appl. Phys. 44 1599
  35. Shimauchi H, Ohno Y, Kishimoto S and Mizutani T 2006 Japan. J. Appl. Phys. 45 5501
  36. Farmer D B and Gordon R G 2006 Nano Lett. 6 699
  37. Javey A, Guo J, Farmer D B, Wang Q, Yenilmez E, Gordon R G, Lundstrom M and Day H 2004 Nano Lett. 4 1319
  38. Kim S K, Xuan Y, Ye P D, Mohammadi S, Back J H and Shim M 2007 Appl. Phys. Lett. 90 163108
  39. Lee J S, Min B, Cho K, Kim S, Park J, Lee Y T, Kim N S, Lee M S, Park S O and Moon J T 2003 J. Cryst. Growth 254 443
  40. Herrmann C F, Fabreguette F H, Finch D S, Geiss R and George S M 2005 Appl. Phys. Lett. 87 123110
  41. Frank M M, Chabal Y J, Green M L, Delabie A, Brijs B, Wilk G D, Ho M-Y, Rosa E B O, Baumvol I J R and Stedile F C 2003 Appl. Phys. Lett. 83 740
  42. Ferrari S, Perissinotti F, Peron E, Fumagalli L, Natali D and Sampietro M 2007 Org. Electron. 8 407
  43. Javey A, Kim H, Brink M, Wang Q, Ural A, Guo J, McIntyre P, McEuen P, Lundstrom M and Dai H 2002 Nat. Mater. 1 241