Electronics based on two-dimensional materials
2014, Nature nanotechnology
https://doi.org/10.1038/NNANO.2014.207Abstract
The compelling demand for higher performance and lower power consumption in electronic systems is the main driving force of the electronics industry's quest for devices and/or architectures based on new materials. Here, we provide a review of electronic devices based on two-dimensional materials, outlining their potential as a technological option beyond scaled complementary metal-oxide-semiconductor switches. We focus on the performance limits and advantages of these materials and associated technologies, when exploited for both digital and analog applications, focusing on the main figures of merit needed to meet industry requirements. We also discuss the use of two-dimensional materials as an enabling factor for flexible electronics and provide our perspectives on future developments.
References (198)
- Dennard, R. H. et al. Design of ion-implanted MOSFET's with very small physical dimensions. IEEE J. Solid-State Circuits, 9, 256-268 (1974).
- Mistry, K. et al. A 45nm logic technology with high-k+metal gate transistors, strained silicon, 9 Cu interconnect layers, 193nm dry patterning, and 100% Pb-free packaging. Electron Devices Meeting, 2007. IEDM 2007. IEEE International , 10-12, 247,250 (2007).
- Cartwright, J. Intel enters the third dimension Nature News (06 May 2011) doi:10.1038/news.2011.274
- Jan, C.-H. et al. A 22nm SoC platform technology featuring 3-D tri-gate and high-k/metal gate, optimized for ultra low power, high performance and high density SoC applications, IEDM Tech. Dig. , San Francisco, pp. 44 -47, December, 2012
- Yu, B. et al. Ultra-thin-body Silicon-on-insulator MOSFET's for terabit-scale integration," in Proc. Int. Semiconductor Device Research Symp., 623-626 (1997).
- Moore, G. E. Cramming more components onto integrated circuits. Electronics Magazine 38, (1965).
- International Technology Roadmap for Semiconductors (ITRS).
- Novoselov, K. S. et al. Two-dimensional atomic crystals. Proc. Natl. Acad. Sci. USA 102, 10451-10453, (2005).
- Novoselov, K. S. et al. Electric field effect in atomically thin carbon films. Science, 306, 666- 669 (2004). In this paper the transport and switching properties of high-quality graphene sheets obtained by micromechanical cleavage were studied.
- Dickinson, R. G. & Pauling, L. The crystal structure of molybdenite. J. Am. Chem. Soc., 45, 1466-1471 (1923).
- Joensen, P. Frindt, R. F. & Morrison, S. R. Single layer MoS 2 . Mat. Res. Bull. 21, 457-461 (1986).
- Bonaccorso, F. et al. Production and processing of graphene and 2d crystals. Mater. Today 15, 564-589 (2012).!
- Lee, G. et al. Flexible and transparent MoS2 field-effect transistors on hexagonal boron nitride- graphene heterostructures. ACS Nano 7, 7931-7936 (2013).
- Geim, A. K. & Grigorieva, I. V. Van der Waals heterostructures. Nature 99, 419-425 (2013)
- Nikonov, D. & Young, I. Overview of beyond-CMOS devices and a uniform methodology for their benchmarking. Proc. IEEE, 101, 2498-2533 (2013).
- Radisavljevic, B., Radenovic, A., Brivio, J., Giacometti, V. & Kis, A. Single-layer MoS 2 transistors. Nature 6, 147-150 (2011). First article where a single layer MoS 2 transistor has been demonstrated.
- Bae, S. et al. Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nature Nanotech. 5, 574-578 (2010).
- Hao, Y. et al. The role of surface oxygen in the growth of large single-crystal graphene on copper. Science 342, 720-723 (2013).
- Li, X. et al. Large-area synthesis of high-quality and uniform graphene films on copper foils. Science 324, 1312-1314 (2009). This paper introduces CVD growth of graphene on copper, demonstrating the first large-area reproducible monolayer growth process.
- Petrone, N. et al. Chemical vapor deposition-derived graphene with electrical performance of exfoliated graphene. Nano Lett. 12, 2751-2756 (2012).!
- Dean, C. R. et al. Boron nitride substrates for high-quality graphene electronics. Nature Nanotech. 5, 722-726 (2010).
- Gong, C. Colombo, L. & Cho, K. Photon-assisted CVD growth of graphene using metal adatoms as catalysts. J. Phys. Chem. C, 116, 18263-18269, (2012).
- Yang, W. et al. Epitaxial growth of single-domain graphene on hexagonal boron nitride. Nature Mater. 12, 792-797 (2013).!
- Rummeli, M. H. et al. Direct low-temperature nanographene CVD synthesis over a dielectric insulator. ACS Nano 4, 4206-4210 (2010).
- Lin, M-Y. et al. Low-temperature grown graphene films by using molecular beam epitaxy. Appl. Phys. Lett. 101, 221911 (2012).
- Yamada, T., Ishihare, M. & Hasegava, M. Low temperature graphene synthesis from Poly(methyl methacrylate) using microwave plasma treatment. Appl. Phys. Express 6, 115102 (2013).
- Berger, C. et al. Ultrathin epitaxial graphite:& 2D electron gas properties and a route toward graphene-based nanoelectronics. J. Phys. Chem. B 108, 19912-19916 (2004).
- Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nature Mater. 8, 203-207 (2009).
- Lin, Y. M. et al. 100-GHz Transistors from wafer-scale epitaxial graphene. Science 327, 662- 662 (2010). In this paper, transistors based on graphene grown on SiC exceeding state-of- the-art silicon transistors for high-frequency electronics have been demonstrated.
- Nagashima, A., Tejima, N., Gamou, Y., Kawai T. & Oshima, C. Electronic structure of monolayer hexagonal boron nitride physisorbed on metal surfaces. Phys. Rev. B: Cond. Matter Mater. Phys. 51, 4606-4613 (1995).
- Zhan, Y., Liu, Z. Najmaei, S. Ajayan, P. M. & Lou, J. Large-area vapor-phase growth and characterization of MoS 2 atomic layers on a SiO 2 substrate. Small, 8, 966-971 (2012).
- Carmalt, C. J., Parkin, I. P. & Peters, E. S. Atmospheric pressure chemical vapour deposition of WS 2 thin films on glass. Polyhedron, 22, 1499-1505 (2003).
- Potoczek, M., Przybylski, K. & Rekas, M. Defect structure and electrical properties of molybdenum disulphide. J. Phys. Chem. Solids 67, 2528-2535 (2006).
- Li, C., Huang, L., Snigdha, G. P., Yu, Y. & Cao, L. Role of boundary layer diffusion in vapor deposition growth of chalcogenide nanosheets: the case of GeS. ACS Nano, 6, 8868-8877 (2012).
- Lippert, G., Dabrowski, J., Lemme, M. C., Marcus, C., Seifarth, O. & Lupina, G. Direct graphene growth on insulator. Phys. Stat. Solidi B 248, 2619-2622 (2011).
- Novoselov, K. S. & Castro Neto A. H. Two-dimensional crystals-based heterostructures: materials with tailored properties. Phys. Scr. T146, 014006 (2012).
- Bonaccorso F., Tan, P. H. & Ferrari A. C., Multiwall nanotubes, multilayers, and hybrid nanostructures: new frontiers for technology and Raman spectroscopy. ACS Nano 7, 1838-1844 (2013).
- Laskar, M. R. et al. Large area single crystal (0001) oriented MoS 2 , Appl. Phys. Lett., 102, 252108 (2013).
- Hernandez, Y. et al. High-yield production of graphene by liquid-phase exfoliation of graphite. Nature Nanotech. 3, 563-568 (2008).
- Maragó, O. M. et al. Brownian motion of graphene. ACS Nano 4, 7515-7523 (2010).
- Coleman, J. N. et al. Two-dimensional nanosheets produced by liquid exfoliation of layered materials. Science 331, 568-571 (2011).
- Torrisi, F. et al. Inkjet-printed graphene electronics. ACS Nano 6, 2992-3006 (2012).
- Zheng, J. et al. High yield exfoliation of two-dimensional chalcogenides using sodium naphthalenide. Nature Comm. 5, 2995 (2014).
- Nathan, A., et al. Flexible electronics: The next ubiquitous platform Proc. IEEE 100, 1486-1517 (2012).
- Hassoun, J. et al. An advanced lithium-ion battery based on a graphene anode and a lithium iron phosphate cathode. Nano Lett. DOI:10.1021/nl502429m (2014).
- Bonaccorso, F., Sun, Z. Hasan, T. & Ferrari, A. C. Graphene photonics and optoelectronics. Nature Photon. 4, 611-622 (2010).
- Withers, F. et al. Heterostructures produced from nanosheet-based inks. Nano Lett. 14, 3987- 3992 (2014).
- Acrivos, J. V., Liang, W. Y., Wilson, J. A. & Yoffe, A. D. Optical studies of metal- semiconductor transmutations produced by intercalation, J. Phys. C, 4, L18 (1971).
- Bonaccorso, F. & Sun, Z. Solution processing of graphene, topological insulators and other 2d crystals for ultrafast photonics. Opt. Mater. Express, 4, 63-78 (2014).
- Green, A. A. & Hersam, M. C. Solution phase production of graphene with controlled thickness via density differentiation. Nano Lett. 9, 4031-4036 (2009).
- Nandamuri, G., Roumimov, S. & Solanki, R. Remote plasma assisted growth of graphene films. Appl. Phys. Lett. 96, 154101 (2010).!
- Wu, Y. et al. Top-gated graphene field-effect-transistors formed by decomposition of SiC. Appl. Phys. Lett. 92, 092102 (2008).!
- Fallahazad, B., Kim, S., Colombo, L. & Tutuc, E. Dielectric thickness dependence of carrier mobility in graphene with HfO 2 top dielectric. Appl. Phys. Lett. 97, 123105 (2010).
- !
- Radisavljevic, B. & Kis, A. Mobility engineering and a metal-insulator transition in monolayer MoS 2 . Nature Mater. 12, 815-820 (2013).
- Fuhrer, M. S. & Hone, J. Measurement of mobility in dual-gate MoS 2 transistor. Nature Nanotech. 8, 146-147 (2013).
- Fiori, G., Szafranek, B. N., Iannaccone, G. & Neumaier, D. Velocity saturation in few-layer MoS 2 transistor, Appl. Phys. Lett. 103, 233509 (2013).
- Wang, H. et. al. Integrated circuits based on bilayer MoS 2 transistors, Nano Lett. 12, 4674-4680 (2012). Demonstration of complex circuits based on TMD materials.
- Liu, H. et al. Statistical study of deep submicron dual-gated field effect transistors on monolayer chemical vapor deposition molybdenum disulfide films. Nano Lett. 13, 2640-2646 (2013).
- Xia, F., Pereibeinos, V., Lin, Y-M., Wu, Y. & Avouris, P. The origins and limits of metal- graphene junction resistance. Nature Nanotech. 6, 179-184 (2011).
- Russo, S., Craciun, M. F., Yamamoto, M., Morpurgo, A. F. & Tarucha, S. Contact resistance in graphene-based devices. Physica E 42, 677-679 (2010).
- Venugopal, A., Colombo, L. & Vogel, E. Contact resistance in few and multilayer graphene devices. Appl. Phys. Lett. 96, 013512 (2010).
- Das, S., Chen, H.-Y., Penumatcha, A.V., & Appenzeller, J. High performance multilayer MoS 2 transistors with scandium contacts. Nano Lett. 13, 100-105 (2012).
- Du, Y. et al. MoS 2 field-effect transistors with graphene/metal heterocontacts. IEEE Electron Device Lett. 35, 599-601 (2014).
- Hsu, A. et al. Impact of graphene interface quality on contact resistance and RF Device Performance. IEEE Electron Device Lett.. 32, 1008-1010 (2011).
- Li, W. et al. Ultraviolet/ozone treatment to reduce metal-graphene contact resistance. Appl. Phys. Lett. 102, 183110 (2013).
- Robinson, J. A, et al. Contacting graphene. Appl. Phys. Lett. 98, 053103 (2011).
- Wang, L. et al. One-dimensional electrical contact to a two-dimensional material. Science 342, 614-617 (2013).
- McDonnell, S., et al. Defect-dominated doping and contact resistance in MoS 2 . Acs Nano 8, 2880-2888 (2014).!
- Y. Taur, T. H. Ning, Fundamentals of modern VLSI Devices, Cambridge Univ. Press, 2001.!
- Rutherglen, C., Jain, D. & Burke, P. Nanotube electronics for radiofrequency applications. Nature Nanotech. 4, 811-819 (2009).
- Huang, X., et al. Sub 50-nm FinFET: PMOS. In Electron Devices Meeting, 1999. IEDM'99. Technical Digest. International (pp. 67-70 (1999).
- Radosavljevic, M. et al. Electrostatics improvement in 3-D tri-gate over ultra-thin body planar InGaAs quantum well field effect transistors with high-K gate dielectric and scaled gate-to- drain/gate-to-source separation. In Electron Devices Meeting (IEDM), 2011 IEEE International (pp. 33-1) (2011).
- Lemme, M. C., Echtermeyer, T. J., Baus, M. & Kurz, H. A Graphene field-effect device. IEEE Electron Device Lett. 28, 282-284 (2007).
- Dewey, G. et al. Carrier transport in high-mobility III-V quantum-well transistors and performance impact for high-speed low-power logic applications. IEEE Electron Device Lett. 29, 1094-1097 (2008).
- X. Li, J. T. Mullen, Z. Jin, K. M. Borysenko, M. B. Nardelli, K. W. Kim, Intrinsic electrical transport properties of monolayer silicene and MoS 2 from first principles. Phys. Rev. B 87, 115418 (2013).
- Liu, H., Neal, A. T., Zhu, Z., Tomanek, D. & Ye, P. D. Phosphorene: an unexplored 2D semiconductor with a high hole mobility. ACS Nano 8, 4033-4041 (2014).
- Li, L. et al. Black phosphorus field-effect transistors. Nature Nanotech. 9, 372-377 (2014).
- Liu, L., Lu, Y. & Guo, J. On monolayer MoS 2 field-effect transistors at the scaling limit. IEEE Trans. Electron Devices, 60, 4133-4139 (2013).
- Liu, L., Kumar, S. B., Ouyang, Y. & Guo, J. Performance limits of monolayer transition metal dichalcogenide transistors, IEEE Trans. Electron Devices. 58, 3042-3047 (2011).
- Datta, S. Quantum Phenomena, Addison-Wesley Pub., 1989
- Naveh, Y. & Likharev, K. K. Modeling of 10-nm-Scale Ballistic MOSFET's. IEEE Electron Device Lett. 21, 242-244 (2000).
- Yokoyama, M. et al. Ultrathin body InGaAs-on-Insulator metal-oxide-semiconductor field- effect transistors with InP passivation layers on Si substrates fabricated by direct wafer bonding. Appl. Phys. Express 4, 054202 (2011).
- Hu, Y. et al. Extraction of channel electron Effective Mobility in InGaAs/Al O n- FinFETs. IEEE Trans. Nanotechnol. 12, 806-809 (2013).
- Pillarisetty, R. et. al. High mobility strained germanium quantum well field effect transistor as the p-channel device option for low power (Vcc = 0.5 V) III-V CMOS architecture," Electron Devices Meeting (IEDM), 2010 IEEE International, 6.7.1, 6-8 (2010).
- Uchida, K., Koga, J., Takagi, S. Experimental study on electron mobility in ultrathin-body silicon-on-insulator metaloxide-semiconductor field-effect transistors. J. Appl. Phys. 102, 074510 (2007).
- Ito, T. et al. Effective mobility enhancement in Al 2 O 3 /InSb/Si quantum well metal oxide semiconductor field effect transistors for thin InSb channel layers. Jap. J. Appl. Phys. 52, 04CF01 (2013).
- Krishnamohan, T. Krivokapic, Z., Uchida, K., Nishi, Y. & Saraswat, K. High-mobility ultrathin strained Ge MOSFETs on bulk and SOI with low band-to-band tunneling leakage: experiments. IEEE Trans. Electr. Devices 53, 990-999 (2006).
- Bao, W., Cai, X., Kim, D., Sridhara, K. & Fuhrer, M. S. High mobility ambipolar MoS 2 field- effect transistors: Substrate and dielectric effects. Appl. Phys. Lett. 102, 042104 (2013).
- Szafranek, B. N., Fiori, G., Schall, D., Neumaier, D. & Kurz, H. Current saturation and voltage gain in bilayer graphene field effect transistors. Nano Lett. 12, 1324-1328 (2012).
- Cho, S., Butch, N. P., Paglione, J. & Fuhrer, M. S. Insulating behavior in ultrathin bismuth selenide field effect transistors. Nano Lett. 11, 1925-1927 (2011).
- Fang, H. et al. High-performance single layered WSe 2 p-FETs with chemically doped contacts. Nano Lett. 12, 3788-3792 (2012).
- Podzorov, V., Gershenson, M. E., Kloc, C., Zeis, R. & Bucher, E. High-mobility field-effect transistors based on transition metal dichalcogenides. Appl. Phys. Lett. 84, 3301-3303 (2004).
- Chen, J. H. Jang, C., Xiao, S., Ishigami, M. & Fuhrer, M. S. Intrinsic and extrinsic performance limits of graphene devices on SiO 2 . Nature Nanotech. 3, 206-209 (2008).
- Geim, A. K. & Novoselov, K. S. The rise of graphene. Nature Mater. 6, 183-191 (2007).
- Majumdar, K, Hobbs, C. & Kirsch, P. D. Benchmarking transition metal dichalcogenide MOSFET in the ultimate physical scaling limit. IEEE Electron Device Lett. 35, 402-404 (2014).
- Yoon, Y., Ganapathi, K. & Salahuddin, S. How good can monolayer MoS 2 transistors be?, Nano Lett., 11, 3768-3773 (2011).
- Corrion, A. L. et. al. High-speed 501-stage DCFL GaN ring oscillator circuits, IEEE Electron Device Lett. 34, 846-848 (2013).
- Kong, Y. et al. Monolithic integrated enhancement/depletion-mode AlGaN/GaN high electron mobility transistors with cap layer engineering. Appl. Phys. Lett. 102, 043505 (2013).
- Guerriero, E. et al. Gigagertz graphene ring oscillators. ACS Nano, 7, 5588-5594 (2013).
- Schall, D., Otto, M., Neumaier, D. & Kurz, H. Integrated ring oscillators based on high- performance graphene inverters. Sci. Rep. 3, 2592 (2013).
- Wakabayashi, H. et al. 45 nm gate length CMOS technology and beyond using steep halo. IEDM conference 2000, 00-49 (2000).
- !
- Davari, B., Dennard, R. H. & Shahidi, G. G. CMOS scaling for high performance and low power-the next ten years. Proc. IEEE 83, 595-606 (1995).
- Ghosh, R. K. & Mahapatra, S. Monolayer transition metal dichalcogenide channel-based tunnel transistor. IEEE J. Electron Dev. Soc. 1, 175-180 (2013).
- Villalon, A. et al. Strained tunnel FETs with record ION: first demonstration of ETSOI TFETs with SiGe channel and RSD. VLSI Technology (VLSIT), 2012 Symposium on 49-50 (2012).
- Krishnamohan, T., Donghyun Kim, Raghunathan, S. & Saraswat, K. Double-Gate Strained- Ge Heterostructure Tunneling FET (TFET) With record high drive currents and ≪60mV/dec subthreshold slope. Electron Devices Meeting, 2008. IEDM 2008. IEEE International 1-3 (2008).
- Kim, S. H., Kam, H., Hu, C. & Liu, T.-J. K. Germanium-source tunnel field effect transistors with record high ION/IOFF. VLSI Technology, 2009 Symposium on 178-179 (2009).
- Gandhi, R., Chen, Z., Singh, N., Banerjee, K. & Lee, S. Vertical Si-nanowire-type tunneling FETs with low subthreshold swing (≤50 mV/decade) at room temperature. IEEE Electron Device Lett. 32, 437-439 (2011).
- Gandhi, R., Chen, Z., Singh, N., Banerjee, K. & Lee, S. CMOS-compatible vertical-silicon- nanowire gate-all-around p-type tunneling FETs with ≤50-mV/decade subthreshold swing. IEEE Electron Device Lett. 32, 1504-1506 (2011).
- Tomioka, K., Yoshimura, M. & Fukui, T. Steep-slope tunnel field-effect transistors using III-V nanowire/Si heterojunction. VLSI Technology (VLSIT), 2012 Symposium on 47-48 (2012).
- Knoll, L. et al. inverters with strained Si nanowire complementary tunnel field-effect transistors. Electron Device Letters, IEEE 34, 813-815 (2013).
- Dewey, G. et al. Fabrication, characterization, and physics of III-V heterojunction tunneling field effect transistors (H-TFET) for steep sub-threshold swing. Electron Devices Meeting (IEDM), 2011 IEEE International 33 (2011).
- Zhang, Q., Iannaccone, G. & Fiori, G. 2-D tunnel transistors based on Bi 2 Se 3 thin film, IEEE Electron Device Lett. 35, 129-131 (2014).
- Radisavljevic, B., Whitwick, M. B. & Kis, A. Integrated circuits and logic operations based on single-layer MoS 2 . ACS Nano 5, 9934-9938 (2011).
- Chen, Z. et al. An integrated logic circuit assembled on a single carbon nanotube. Science 311, 1735 (2006).
- Ha, M. et al. Aerosol jet printed, low voltage, electrolyte gated carbon nanotube ring oscillators with sub-5 µs stage delays. Nano Lett. 13, 954-960 (2013).
- Fix, W., Ullmann, A., Ficker, J. & Clemens, W. Fast polymer integrated circuits. Appl. Phys. Lett. 81, 1735-1737 (2002).
- Seabaugh, A. C. & Zhang, Q. Low-voltage tunnel transistors for beyond CMOS logic. Proc. IEEE 98, 2095-2110 (2010).
- Ionescu, A. M. & Riel, H. Tunnel field-effect transistors as energy-efficient electronic switches. Nature 479, 329-337 (2011).
- Lu, H. & Seabaugh, A. C. Tunnel field-effect transistors: state-of-the-art. J. Electron Dev. Soc. 2, 44-49 (2014).
- Appenzeller, J., Lin, Y., Knoch, J. & Avouris, P. Band-to-band tunneling in carbon nanotube field-effect transistors. Phys. Rev. Lett. 93, 196805 (2004). First demonstration of TFET with SS<60 mV/dec based on carbon material.
- 121 Lu, Y. et al. DNA functionalization of carbon nanotubes for ultrathin atomic layer deposition of high kappa dielectrics for nanotube transistors with 60 mV/decade switching. J. Am. Chem. Soc. 128, 3518-3519 (2006).
- Mayer, F. et al. Impact of SOI, Si1-xGexOI and GeOI substrates on CMOS compatible tunnel FET performance. Electron Devices Meeting, 2008. IEDM 2008. IEEE International 1-5 (2008).
- Leonelli, D. et al. Performance enhancement in multi gate tunneling field effect transistors by scaling the fin-width. Jpn. J. Appl. Phys. 49, 04DC10 (2010).
- Huang, Q. et al. A novel Si tunnel FET with 36mV/dec subthreshold slope based on junction depleted-modulation through striped gate configuration. Electron Devices Meeting (IEDM), 2012 IEEE International 8 (2012).
- Jena, D. Tunneling transistors based on graphene and 2-D crystals. Proc. IEEE 101, 1585- 1602 (2013).
- Das, S., Prakash, A., Salazar, R. & Appenzeller, J. Toward low-power electronics: tunneling phenomena in transition metal dichalcogenides. ACS Nano, 8, 1681-1689 (2014).
- Zhang, Q., Zhao, W. & Seabaugh, A. Low-subthreshold-swing tunnel transistors. IEEE Electron Device Lett. 27, 297-300 (2006).
- Efetov, D. & Kim, P. Controlling electron-phonon interactions in graphene at ultrahigh carrier densities. Phys. Rev. Lett. 105, 256805 (2010).
- Ma, N. & Jena, D. Interband tunneling in two-dimensional crystal semiconductors. Appl. Phys. Lett. 102, 132102 (2013).
- Chang, J., Register, L. F. & Banerjee, S. K. Topological insulator Bi 2 Se 3 thin films as an alternative channel material in metal-oxide-semiconductor field-effect transistors. J. Appl. Phys. 112, 124511 (2012).
- Alam, K. & Lake, R. Monolayer MoS 2 transistors beyond the technology road map. IEEE Trans. Electron Devices, 59 3250-3254 (2012). This paper presents MoS 2 -based devices with performances close to the ITRS requirements.
- Jariwala, D., Sangwan, V. K., Lauhon, L. J., Marks, T. J. & Hersam, M. C. Emerging device applications for semiconducting two-dimensional transition metal dichalcogenides. ACS Nano, 8, 1102-1120 (2014).
- Feenstra, R. M., Jena, D. & Gu, G. Single-particle tunneling in doped graphene-insulator- graphene junctions. J. Appl. Phys. 111, 043711-043711 (2012).
- Zhao, P., Feenstra, R. M., Gu, G. & Jena, D. SymFET: A proposed symmetric graphene tunneling field-effect transistor. IEEE Trans. Electron. Dev. 60, 951-957 (2013).
- Britnell, L. et al. Field-effect tunneling transistor based on vertical graphene heterostructures. Science 335, 947-950 (2012). This paper demonstrated a new concept of vertical tunnelling transistors based on heterostructures assembled from 2D atomic crystals..!
- Kikuchi, K "Coherent Optical Communications: Historical Perspectives and Future Directions", in High Spectral Density Optical Communication Technologies, Springer, Vol. 6, 11-49 (2010)
- Bolotin, K. I. et al. Ultrahigh electron mobility in suspended graphene. Solid State Comm. 146, 351-355 (2008).
- Schwierz, F. Graphene transistors. Nature Nanotech. 5, 487-496 (2010).
- Avouris, P. Graphene: electronic and photonic properties and devices. Nano Lett. 10, 4285- 4294 (2010).
- Meric, I. et al. Current saturation in zero-bandgap, top-gated graphene field-effect transistors. Nature Nanotech. 3, 654-659 (2008). The first paper measuring saturation velocity in graphene.
- Dorgan, V. E., Bae, M-H. & Pop, E. Mobility and saturation velocity in graphene on SiO 2 . Appl. Phys. Lett. 97, 082112 (2010).
- Dorgan, V. E., Behnam, A., Conley, H. J., Bolotin, K. I. & Pop, E. High-field electrical and thermal transport in suspended graphene. Nano Lett. 13, 4581 4586 (2013).
- Schwierz, F. Graphene transistors: status, prospects, and problems. Proc. IEEE 6, 770-775 (2013).
- Zheng, F. et al. Sub-10 nm Gate length graphene transistors: operating at terahertz frequencies with current saturation. Sci. Rep. 3, 1314 (2013).
- Guo, Z. et al. Record maximum oscillation frequency in C-face epitaxial graphene transistors. Nano Lett. 13, 942-947 (2013).
- Lai, R. et al. Sub 50 nm InP HEMT device with Fmax greater than 1 THz. Electron Devices Meeting, 2007. IEDM 2007. IEEE International. 609-611 (2007).
- Fiori, G. & Iannaccone, G. Insights on radio frequency bilayer graphene FETs. Electron Devices Meeting, 2012. IEDM 2012. IEEE International. 17.3.1 -17.3.4 (2012).
- Fang, T., Konar, A., Xing, H. & Jena D. Mobility in semiconducting graphene nanoribbons: Phonon, impurity, and edge roughness scattering. Phys. Rev. B 78, 205403 (2008).
- Butch, N.P. et al. Strong surface scattering in ultrahigh-mobility Bi 2 Se 3 topological insulator crystals. Phys. Rev. B 81, 241301 (R) (2010).
- Mehr, W. et al. Vertical graphene based transistor. IEEE#Electron#Device#Lett.#33, 691 (2012).
- Vaziri, S. et al. A graphene-based hot electron transistor. Nano Lett. 13, 1435-1439 (2013).
- Wang, Z. F. et al. Ballistic rectification in a Z-shaped graphene nanoribbon junction. Appl. Phys. Lett. 92, 133119 (2008).
- Young, A. F. & Kim, P. Quantum interference and Klein tunnelling in graphene heterojunctions. Nature Phys. 5, 222-226 (2009).
- Guerriero, F. et al. Graphene audio voltage amplifier. Small 8, 357-361 (2012).
- Wu, Y. et al. State-of-the-art graphene high-frequency electronics. Nano Lett. 12, 3062-3067 (2012).
- Wang, H., Hsu, A., Wu, J., Kong, J. & Palacios, T. Graphene-based ambipolar RF mixers. IEEE Electron Device Lett. 31, 906-908 (2010).
- Lin, Y.-M. et al. Wafer-scale graphene integrated circuit. Science 332, 1294-1297 (2011).
- Habibpour, O., Vukusic, J. & Stake, J. A 30-GHz integrated subharmonic mixer based on a multichannel graphene FET. IEEE Trans. on Microwave Theo. and Tech., 61, 841-847 (2013).
- Fiori, G., Neumaier, D., Szafranek, B.N. & Iannaconne, G. Bilayer graphene transistors for analog electronics. IEEE Trans. Electron Dev. 61, 729 (2014).
- Wang, H., Nezich, D., Kong, J. & Palacios, T. Graphene frequency multipliers. IEEE Electron Device Lett., 30, 547-549, (2009).
- Ramon, M. E. et al. Three-gigahertz graphene frequency doubler on quartz operating beyond the transit frequency. IEEE Trans. Nanotechnol. 11, 877-883 (2012).
- Han, S. J., Valdes Garcia, A., Oida, S., Jenkins, K. A. & Haensch, W. Graphene radio frequency receiver integrated circuit. Nature Comm. 5, 3086 (2014).
- Chen, Y., Au, J., Kazlas, P., Ritenour, A., Gates, H. and McCreary, M. Electronic paper: flexible active-matrix electronic ink display. Nature 423, 136 (2003).
- Dankerl, M. et al. Graphene solution-gated field-effect transistor array for sensing applications Adv. Funct. Mater. 20, 3117-3124, (2010)
- Yoon, J. et al. Ultrathin silicon solar microcells for semitransparent, mechanically flexible and microconcentrator module designs. Nature Mater. 7, 907-915 (2008).
- Zhai, Y., Mathew, L., Rao, R., Xu, D. & Banerjee, S. K. High-performance flexible thin-film transistors exfoliated from bulk wafer. Nano Lett. 12, 5609-5615 (2012).
- Shahrjerdi, D. & Bedell, S. W. Extremely flexible nanoscale ultrathin body silicon integrated circuits on plastic. Nano Lett. 13, 315-320 (2013).
- Sekitani, T. et al. Organic nonvolatile memory transistors for flexible sensor arrays. Science 326, 1516-1519 (2009).
- !
- Singh, M., Haverinen, H. M., Dhagat, P. & Jabbour, G. E. Inkjet printing process and its applications. Adv. Mater. 22, 673-685 (2010).
- Lee, K. F., Gibbons, J. F., Saraswat, K. C. & Kamins, T. I. Thin film MOSFET's fabricated in laser"annealed polycrystalline silicon. Appl. Phys. Lett. 35, 173-175 (1979)
- Castellanos-Gomez, A. et al. Elastic properties of freely suspended MoS 2 nanosheets. Adv. Mater. 24, 772-775 (2012).
- Pu, J. et al. Highly flexible MoS 2 thin-film transistors with ion gel dielectrics. Nano Lett. 12, 4013-4017 (2012).
- Lee, C., Wei, X., Kysar, J. W. & Hone, J. Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science, 321, 385-388 (2008).
- Cummings, A. W. et al. Charge transport in polycrystalline graphene: challenges and opportunities. Adv. Mater. 26, 5079-5094 (2014).
- Zhu, W. et al. Graphene radio frequency devices on flexible substrate. Appl. Phys. Lett. 102, 233102 (2013).
- Petrone, N., Meric, I., Hone, J. & Shepard, K. L. Graphene field-effect transistors with gigahertz-frequency power gain on flexible substrates. Nano Lett. 13, 121-125 (2013).
- Chang, H.-Y. et al. High-performance, highly bendable MoS 2 transistors with high-k dielectrics for flexible low-power systems. ACS Nano 7, 5446-5452 (2013).
- Nomura, K. et al. Thin-film transistor fabricated in single-crystalline transparent oxide semiconductor. Science, 300, 1269-1272, (2003).
- Pecora, A. et al. Low-temperature polysilicon thin film transistors on polyimide substrates for electronics on plastic. Solid-State Electron. 52, 348-352 (2008).
- Sundar, V. C. et al. Elastomeric transistor stamps: reversible probing of charge transport in organic crystals. Science 303, 1644-1646 (2004).
- Uemura, T., Hirose, Y., Uno, M., Takimiya, K. & Takeya, J. Very high mobility in solution- processed organic thin-film transistors of highly ordered [1]benzothieno[3,2-b]benzothiophene derivatives. Appl. Phys. Express 2, 111501 (2009).
- Kim, M. et al. High mobility bottom gate InGaZnO thin film transistors with SiOx etch stopper. Appl. Phys. Lett. 90, 212114 (2007).
- Zavodchikova, M. Y. et al. Carbon nanotube thin film transistors based on aerosol methods. Nanotechnology, 20, 085201 (2009).
- Snow, E. S., Campbell, P. M., Ancona, M. G. & Novak, J. P. High-mobility carbon-nanotube thin-film transistors on a polymeric substrate. Appl. Phys. Lett. 86, 033105 (2005).
- Ha, M. et al. Printed, sub-3 V digital circuits on plastic from aqueous carbon nanotube inks. ACS Nano 4, 4388-4395 (2010).
- Lee, S.-W. & Joo, S.-K. Low temperature poly-Si thin-film transistor fabrication by metal- induced lateral crystallization. IEEE Electron Device Lett. 17, 160-162 (1996).
- Kazuhiro, S., Sugiura, O. & Matsumura, M. High-mobility poly-Si thin-film transistors fabricated by a novel excimer laser crystallization method. IEEE Trans. Electron Devices, 40, 112-117 (1993).
- Nomura, K. Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors, Nature 432, 488-492 (2004).
- Forrest, S. R. The path to ubiquitous and low-cost organic electronic appliances on plastic. Nature 428, 911-918 (2004).
- Kim, D.-H. et al. Complementary logic gates and ring oscillators on plastic substrates by use of printed ribbons of single-crystalline silicon. IEEE Electron Device Lett. 29, 73-76 (2008).
- Sun, D. et al. Flexible high-performance carbon nanotube integrated circuits. Nature Nanotech. 6, 156-161 (2011).
- Mailly-Giacchetti, B. et al. pH sensing properties of graphene solution-gated field-effect transistors. J. Appl. Phys. 114, (2013).
- !
- Mannoor, M. S. et al. Graphene-based wireless bacteria detection on tooth enamel. Nature Comm. 3, 763 (2012).
- ! Wang, Q. H., Kalantar-Zadeh, K., Kis, A., Coleman, J. N. & Strano, M. S. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nature Nanotech. 7, 699- 712 (2012).