Spectral conditioning and pseudospectral growth
2007, Numerische Mathematik
https://doi.org/10.1007/S00211-007-0080-3Abstract
Using the language of pseudospectra, we study the behavior of matrix eigenvalues under two scales of matrix perturbation. First, we relate Lidskii's analysis of small perturbations to a recent result of Karow on the growth rate of pseudospectra. Then, considering larger perturbations, we follow recent work of Alam and Bora in characterizing the distance from a given matrix to the set of matrices with multiple eigenvalues in terms of the number of connected components of pseudospectra.
References (18)
- Alam, R., Bora, S.: On sensitivity of eigenvalues and eigendecompositions of matrices. Linear Algebra Appl. 396, 273-301 (2005)
- Burke, J.V., Lewis, A.S., Overton, M.L.: Optimization and pseudospectra, with applications to ro- bust stability. SIAM J. Matrix Anal. Appl. 25, 80-104 (2003) Corrigendum: www.cs.nyu.edu/cs/ faculty/overton/papers/pseudo corrigendum.html
- Burke, J.V., Lewis, A.S., Overton, M.L.: Pseudospectral components and the distance to uncontrolla- bility. SIAM J. Matrix Anal. Appl. 26, 350-361 (2004)
- Burke, J.V., Lewis, A.S., Overton M.L.: Convexity and Lipschitz behavior of small pseudospectra. SIAM J. Matrix Anal. Appl. (2007, in press)
- Chaitin-Chatelin, F., Harrabi, A., Ilahi, A.: About Hölder condition numbers and the stratification diagram for defective eigenvalues. Math. Comput. Simulation 54, 397-402 (2000)
- Demmel, J.W.: A Numerical Analyst's Jordan Canonical Form. PhD thesis, University of California, Berkeley (1983)
- Demmel, J.W.: Computing stable eigendecompositions of matrices. Linear Algebra Appl. 79, 163- 193 (1986)
- Demmel, J.W.: Nearest defective matrices and the geometry of ill-conditioning. In: Cox, M.G., Hammerling, S. (eds.) Reliable Numerical Computation, pp. 35-55. Oxford University Press, Ox- ford (1990)
- Ilahi, A.: Validation du Calcul sur Ordinateur: Application de la Théorie des Singularités. PhD thesis, University of Toulouse I (1998)
- Karow, M.: Geometry of Spectral Value Sets. PhD thesis, University of Bremen (2003)
- Karow, M.: Eigenvalue condition numbers and a formula of Burke, Lewis and Overton. Electron. J. Linear Algebra 15, 143-153 (2006)
- Lidskii, V.B.: Perturbation theory of non-conjugate operators. USSR Comput. Mathematics Math. Phys. 6(1), 73-85 (1966)
- Moro, J., Burke, J.V., Overton, M.L.: On the Lidskii-Vishik-Lyusternik perturbation theory for the eigenvalues of matrices with arbitrary Jordan structure. SIAM J. Matrix Anal. Appl. 18, 793-817 (1997)
- Polyak, B.T.: Convexity of nonlinear image of a small ball with applications to optimization. Set-Valued Anal. 9, 159-168 (2001)
- Sun, J.G.: A note on simple non-zero singular values. J. Comput. Math. 6, 258-266 (1988)
- Trefethen, L.N., Embree, M.: Spectra and Pseudospectra: The Behavior of Nonnormal Matrices and Operators. Princeton University Press, Princeton (2005)
- Varah, J.M.: On the separation of two matrices. SIAM J. Numer. Anal. 16, 216-222 (1979)
- Wilkinson, J.H.: Sensitivity of eigenvalues II. Utilitas Mathematica 30, 243-286 (1986)