Academia.eduAcademia.edu

Outline

Spectral conditioning and pseudospectral growth

2007, Numerische Mathematik

https://doi.org/10.1007/S00211-007-0080-3

Abstract

Using the language of pseudospectra, we study the behavior of matrix eigenvalues under two scales of matrix perturbation. First, we relate Lidskii's analysis of small perturbations to a recent result of Karow on the growth rate of pseudospectra. Then, considering larger perturbations, we follow recent work of Alam and Bora in characterizing the distance from a given matrix to the set of matrices with multiple eigenvalues in terms of the number of connected components of pseudospectra.

References (18)

  1. Alam, R., Bora, S.: On sensitivity of eigenvalues and eigendecompositions of matrices. Linear Algebra Appl. 396, 273-301 (2005)
  2. Burke, J.V., Lewis, A.S., Overton, M.L.: Optimization and pseudospectra, with applications to ro- bust stability. SIAM J. Matrix Anal. Appl. 25, 80-104 (2003) Corrigendum: www.cs.nyu.edu/cs/ faculty/overton/papers/pseudo corrigendum.html
  3. Burke, J.V., Lewis, A.S., Overton, M.L.: Pseudospectral components and the distance to uncontrolla- bility. SIAM J. Matrix Anal. Appl. 26, 350-361 (2004)
  4. Burke, J.V., Lewis, A.S., Overton M.L.: Convexity and Lipschitz behavior of small pseudospectra. SIAM J. Matrix Anal. Appl. (2007, in press)
  5. Chaitin-Chatelin, F., Harrabi, A., Ilahi, A.: About Hölder condition numbers and the stratification diagram for defective eigenvalues. Math. Comput. Simulation 54, 397-402 (2000)
  6. Demmel, J.W.: A Numerical Analyst's Jordan Canonical Form. PhD thesis, University of California, Berkeley (1983)
  7. Demmel, J.W.: Computing stable eigendecompositions of matrices. Linear Algebra Appl. 79, 163- 193 (1986)
  8. Demmel, J.W.: Nearest defective matrices and the geometry of ill-conditioning. In: Cox, M.G., Hammerling, S. (eds.) Reliable Numerical Computation, pp. 35-55. Oxford University Press, Ox- ford (1990)
  9. Ilahi, A.: Validation du Calcul sur Ordinateur: Application de la Théorie des Singularités. PhD thesis, University of Toulouse I (1998)
  10. Karow, M.: Geometry of Spectral Value Sets. PhD thesis, University of Bremen (2003)
  11. Karow, M.: Eigenvalue condition numbers and a formula of Burke, Lewis and Overton. Electron. J. Linear Algebra 15, 143-153 (2006)
  12. Lidskii, V.B.: Perturbation theory of non-conjugate operators. USSR Comput. Mathematics Math. Phys. 6(1), 73-85 (1966)
  13. Moro, J., Burke, J.V., Overton, M.L.: On the Lidskii-Vishik-Lyusternik perturbation theory for the eigenvalues of matrices with arbitrary Jordan structure. SIAM J. Matrix Anal. Appl. 18, 793-817 (1997)
  14. Polyak, B.T.: Convexity of nonlinear image of a small ball with applications to optimization. Set-Valued Anal. 9, 159-168 (2001)
  15. Sun, J.G.: A note on simple non-zero singular values. J. Comput. Math. 6, 258-266 (1988)
  16. Trefethen, L.N., Embree, M.: Spectra and Pseudospectra: The Behavior of Nonnormal Matrices and Operators. Princeton University Press, Princeton (2005)
  17. Varah, J.M.: On the separation of two matrices. SIAM J. Numer. Anal. 16, 216-222 (1979)
  18. Wilkinson, J.H.: Sensitivity of eigenvalues II. Utilitas Mathematica 30, 243-286 (1986)