Pseudospectra computation of large matrices
2004
Abstract
Abstract. Transfer functions have been shown to provide monotonic approximations to the resolvent 2-norm of A, R (z)=(A− zI)− 1, when associated with a sequence of nested spaces. This paper addresses the open question of the effectiveness of the transfer function scheme for the computation of the pseudospectrum of large matrices.
References (42)
- J. Baglama, D. Calvetti, and L. Reichel. IRBL: An implicitly restarted block Lanczos method for large-scale Hermitian eigenproblems. SIAM J. Sci. Comput., 24(5):1650-1677, 2003.
- C. Bekas and E. Gallopoulos. Cobra: Parallel path following for computing the matrix pseu- dospectrum. Parallel Computing, 27(14):1879-1896, 2001.
- C. Bekas and E. Gallopoulos. Parallel computation of pseudospectra by fast descent. Parallel Computing, 28(2):223-242, 2002.
- C. Bekas, E. Kokiopoulou, and E. Gallopoulos. The design of a distributed MATLAB-based environment for computing pseudospectra. Future Generation Computer Systems, to ap- pear.
- C. Bekas, E. Kokiopoulou, E. Gallopoulos, and E. Simoncini. Parallel computation of pseu- dospectra using transfer functions on a MATLAB-MPI cluster platform. In Recent Ad- vances in Parallel Virtual Machine and Message Passing Interface, Proc.9th European PVM/MPI Users' Group Meeting, Springer-Verlag, LNCS Vol. 2474, 2002.
- C. Bekas, E. Kokiopoulou, I. Koutis, and E. Gallopoulos. Towards the effective parallel compu- tation of matrix pseudospectra. In Proc. 15th ACM Int'l. Conf. Supercomputing (ICS'01), pages 260-269, Sorrento, Italy, June 2001.
- M.W. Berry, D. Mezher, B. Philippe, and A. Sameh. Parallel computation of the singular value decomposition. Technical report no. 4694, IRISA, Rennes, Jan. 2003.
- R.F. Boisvert, R. Pozo, K. Remington, R. Barrett, and J. Dongarra. The Matrix Market: A Web repository for test matrix data. In R.F. Boisvert, editor, The Quality of Numerical Software, Assessment and Enhancement, pages 125-137. Chapman+Hall, London, 1997.
- T. Braconnier and N.J. Higham. Computing the field of values and pseudospectra using the Lanczos method with continuation. BIT, 36(3):422-440, 1996.
- M. Brühl. A curve tracing algorithm for computing the pseudospectrum. BIT, 33(3):441-445, 1996.
- J.V. Burke, A.S. Lewis, and M.L. Overton. Optimization over pseudospectra, with applications to robust stability. To appear, SIAM J. Matrix Anal. Appl., 2003.
- D. R. Fokkema, G. A. G. Sleijpen, and H. A. van der Vorst. Jacobi-Davidson style QR and QZ algorithms for the reduction of matrix pencils. SIAM J. Sc. Comp., 20(1):94-125, 1998.
- R.W. Freund. Solution of shifted linear systems by quasi-minimal residual iterations. In L. Re- ichel, A. Ruttan, and R.S. Varga, editors, Numerical Linear Algebra, pages 101-121, Berlin, 1993. W. de Gruyter.
- A. Frommer. Bicgstab( ) for families of shifted linear systems. Computing, 7(2):87-109, 2003.
- A. Frommer and U. Glässner. Restarted GMRES for shifted linear systems. SIAM J. Sci. Comput., 19(1):15-26, January 1998.
- V. Heuveline, B. Philippe, and M. Sadkane. Parallel computation of spectral portrait of large matrices by Davidson type methods. Numer. Algorithms, 16(1):55-75 (1998), 1997.
- N.J. Higham. The Matrix Computation Toolbox. Technical report, Manchester Centre for Computational Mathematics, 2002. In www.ma.man.uc.uk/˜higham/mctoolbox.
- M. Hochstenbach. A Jacobi-Davidson type SVD method. SIAM J. Sci. Comput., 23(2):606- 628, 2001.
- Z. Jia and D. Niu. An implicitly restarted refined bidiagonalization Lanczos method for com- puting a partial singular value decomposition. SIAM J. Matrix Anal. Appl., 25(1), 2003.
- E. Kokiopoulou, C. Bekas, and E. Gallopoulos. Computing smallest singular triplets with implicitly restarted Lanczos bidiagonalization. Applied Numerical Mathematics, to appear.
- R. M. Larsen. Lanczos bidiagonalization with partial reorthogonalization. PhD thesis, Dept. Computer Science, University of Aarhus, DK-8000 Aarhus C, Denmark, Oct. 1998.
- R. Lehoucq, D.C. Sorensen, and C. Yang. Arpack User's Guide: Solution of Large-Scale Eigenvalue Problems With Implicitly Restarted Arnoldi Methods. SIAM, Philadelphia, 1998.
- S.H. Lui. Computation of pseudospectra with continuation. SIAM J. Sci. Comput., 18(2):565- 573, 1997.
- D. Mezher. A graphical tool for driving the parallel computation of pseudosprectra. In Proc. 15th ACM Int'l. Conf. Supercomputing (ICS'01), pages 270-276, Sorrento, Italy, June 2001.
- D. Mezher and B. Philippe. PAT -a reliable path following algorithm, Aug. 2000. To appear.
- D. Mezher and B. Philippe. Parallel computation of the pseudospectrum of large matrices. Parallel Computing, 28(2):199-221, 2002.
- B. N. Parlett. The Symmetric Eigenvalue Problem. Prentice Hall, Englewood Cliffs, 1980.
- B. Philippe and M. Sadkane. Computation of the fundamental singular subspace of a large matrix. Lin. Alg. Appl., 257:77-104, 1997.
- Pseudospectra gateway. At the Oxford University site http://web.comlab.ox.ac.uk/projects/pseudospectra.
- Y. Saad. Iterative Methods for Sparse Linear Systems. SIAM, sec. edt., Philadelphia, 2003.
- Y. Saad and M. H. Schultz. GMRES: A generalized minimal residual algorithm for solving nonsymmetric linear systems. SIAM J. Sci. Statist. Comput., 7(3):856-869, July 1986.
- V. Simoncini. Restarted full orthogonalization method for shifted linear systems. BIT Numer- ical Mathematics, 43(2):459-466, 2003.
- V. Simoncini and E. Gallopoulos. Transfer functions and resolvent norm approximation of large matrices. Electronic Transactions on Numerical Analysis (ETNA), 7:190-201, 1998.
- G.L.G. Sleijpen and H.A. van der Vorst. A Jacobi-Davidson iteration method for linear eigen- value problems. SIAM Rev., 42(2):267-293, 2000.
- J.-g. Sun. A note on simple non-zero singular values. J. Comput. Math., 6(3):258-266, 1988.
- F. Tisseur and N. J. Higham. Structured pseudospectra for polynomial eigenvalue problems, with applications. SIAM J. Matrix Anal. Appl., pages 187-208, 2001.
- K.-C. Toh and L.N. Trefethen. Calculation of pseudospectra by the Arnoldi iteration. SIAM J. Sci. Comput., 17(1):1-15, 1996.
- L.N. Trefethen. Pseudospectra of matrices. In D.F. Griffiths and G.A. Watson, editors, Nu- merical Analysis 1991, Proc. 14th Dundee Conf., pages 234-266. Essex, UK: Longman Sci. and Tech., 1991.
- L.N. Trefethen. Computation of pseudospectra. In Acta Numerica 1999, volume 8, pages 247-295. Cambridge University Press, 1999.
- T. Wright. Eigtool: A graphical tool for nonsymmetric eigenproblems, Dec. 2002. At the Oxford University Computing Laboratory site http://web.comlab.ox.ac.uk/pseudospectra/eigtool.
- T. Wright and L. N. Trefethen. Large-scale computation of pseudospectra using ARPACK and Eigs. SIAM J. Sci. Comp., 23(2):591:605, 2001.
- T.G. Wright. Algorithms and Software for Pseudospectra. PhD thesis, University of Oxford, 2002.