Academia.eduAcademia.edu

Outline

Pseudospectra computation of large matrices

2004

Abstract

Abstract. Transfer functions have been shown to provide monotonic approximations to the resolvent 2-norm of A, R (z)=(A− zI)− 1, when associated with a sequence of nested spaces. This paper addresses the open question of the effectiveness of the transfer function scheme for the computation of the pseudospectrum of large matrices.

References (42)

  1. J. Baglama, D. Calvetti, and L. Reichel. IRBL: An implicitly restarted block Lanczos method for large-scale Hermitian eigenproblems. SIAM J. Sci. Comput., 24(5):1650-1677, 2003.
  2. C. Bekas and E. Gallopoulos. Cobra: Parallel path following for computing the matrix pseu- dospectrum. Parallel Computing, 27(14):1879-1896, 2001.
  3. C. Bekas and E. Gallopoulos. Parallel computation of pseudospectra by fast descent. Parallel Computing, 28(2):223-242, 2002.
  4. C. Bekas, E. Kokiopoulou, and E. Gallopoulos. The design of a distributed MATLAB-based environment for computing pseudospectra. Future Generation Computer Systems, to ap- pear.
  5. C. Bekas, E. Kokiopoulou, E. Gallopoulos, and E. Simoncini. Parallel computation of pseu- dospectra using transfer functions on a MATLAB-MPI cluster platform. In Recent Ad- vances in Parallel Virtual Machine and Message Passing Interface, Proc.9th European PVM/MPI Users' Group Meeting, Springer-Verlag, LNCS Vol. 2474, 2002.
  6. C. Bekas, E. Kokiopoulou, I. Koutis, and E. Gallopoulos. Towards the effective parallel compu- tation of matrix pseudospectra. In Proc. 15th ACM Int'l. Conf. Supercomputing (ICS'01), pages 260-269, Sorrento, Italy, June 2001.
  7. M.W. Berry, D. Mezher, B. Philippe, and A. Sameh. Parallel computation of the singular value decomposition. Technical report no. 4694, IRISA, Rennes, Jan. 2003.
  8. R.F. Boisvert, R. Pozo, K. Remington, R. Barrett, and J. Dongarra. The Matrix Market: A Web repository for test matrix data. In R.F. Boisvert, editor, The Quality of Numerical Software, Assessment and Enhancement, pages 125-137. Chapman+Hall, London, 1997.
  9. T. Braconnier and N.J. Higham. Computing the field of values and pseudospectra using the Lanczos method with continuation. BIT, 36(3):422-440, 1996.
  10. M. Brühl. A curve tracing algorithm for computing the pseudospectrum. BIT, 33(3):441-445, 1996.
  11. J.V. Burke, A.S. Lewis, and M.L. Overton. Optimization over pseudospectra, with applications to robust stability. To appear, SIAM J. Matrix Anal. Appl., 2003.
  12. D. R. Fokkema, G. A. G. Sleijpen, and H. A. van der Vorst. Jacobi-Davidson style QR and QZ algorithms for the reduction of matrix pencils. SIAM J. Sc. Comp., 20(1):94-125, 1998.
  13. R.W. Freund. Solution of shifted linear systems by quasi-minimal residual iterations. In L. Re- ichel, A. Ruttan, and R.S. Varga, editors, Numerical Linear Algebra, pages 101-121, Berlin, 1993. W. de Gruyter.
  14. A. Frommer. Bicgstab( ) for families of shifted linear systems. Computing, 7(2):87-109, 2003.
  15. A. Frommer and U. Glässner. Restarted GMRES for shifted linear systems. SIAM J. Sci. Comput., 19(1):15-26, January 1998.
  16. V. Heuveline, B. Philippe, and M. Sadkane. Parallel computation of spectral portrait of large matrices by Davidson type methods. Numer. Algorithms, 16(1):55-75 (1998), 1997.
  17. N.J. Higham. The Matrix Computation Toolbox. Technical report, Manchester Centre for Computational Mathematics, 2002. In www.ma.man.uc.uk/˜higham/mctoolbox.
  18. M. Hochstenbach. A Jacobi-Davidson type SVD method. SIAM J. Sci. Comput., 23(2):606- 628, 2001.
  19. Z. Jia and D. Niu. An implicitly restarted refined bidiagonalization Lanczos method for com- puting a partial singular value decomposition. SIAM J. Matrix Anal. Appl., 25(1), 2003.
  20. E. Kokiopoulou, C. Bekas, and E. Gallopoulos. Computing smallest singular triplets with implicitly restarted Lanczos bidiagonalization. Applied Numerical Mathematics, to appear.
  21. R. M. Larsen. Lanczos bidiagonalization with partial reorthogonalization. PhD thesis, Dept. Computer Science, University of Aarhus, DK-8000 Aarhus C, Denmark, Oct. 1998.
  22. R. Lehoucq, D.C. Sorensen, and C. Yang. Arpack User's Guide: Solution of Large-Scale Eigenvalue Problems With Implicitly Restarted Arnoldi Methods. SIAM, Philadelphia, 1998.
  23. S.H. Lui. Computation of pseudospectra with continuation. SIAM J. Sci. Comput., 18(2):565- 573, 1997.
  24. D. Mezher. A graphical tool for driving the parallel computation of pseudosprectra. In Proc. 15th ACM Int'l. Conf. Supercomputing (ICS'01), pages 270-276, Sorrento, Italy, June 2001.
  25. D. Mezher and B. Philippe. PAT -a reliable path following algorithm, Aug. 2000. To appear.
  26. D. Mezher and B. Philippe. Parallel computation of the pseudospectrum of large matrices. Parallel Computing, 28(2):199-221, 2002.
  27. B. N. Parlett. The Symmetric Eigenvalue Problem. Prentice Hall, Englewood Cliffs, 1980.
  28. B. Philippe and M. Sadkane. Computation of the fundamental singular subspace of a large matrix. Lin. Alg. Appl., 257:77-104, 1997.
  29. Pseudospectra gateway. At the Oxford University site http://web.comlab.ox.ac.uk/projects/pseudospectra.
  30. Y. Saad. Iterative Methods for Sparse Linear Systems. SIAM, sec. edt., Philadelphia, 2003.
  31. Y. Saad and M. H. Schultz. GMRES: A generalized minimal residual algorithm for solving nonsymmetric linear systems. SIAM J. Sci. Statist. Comput., 7(3):856-869, July 1986.
  32. V. Simoncini. Restarted full orthogonalization method for shifted linear systems. BIT Numer- ical Mathematics, 43(2):459-466, 2003.
  33. V. Simoncini and E. Gallopoulos. Transfer functions and resolvent norm approximation of large matrices. Electronic Transactions on Numerical Analysis (ETNA), 7:190-201, 1998.
  34. G.L.G. Sleijpen and H.A. van der Vorst. A Jacobi-Davidson iteration method for linear eigen- value problems. SIAM Rev., 42(2):267-293, 2000.
  35. J.-g. Sun. A note on simple non-zero singular values. J. Comput. Math., 6(3):258-266, 1988.
  36. F. Tisseur and N. J. Higham. Structured pseudospectra for polynomial eigenvalue problems, with applications. SIAM J. Matrix Anal. Appl., pages 187-208, 2001.
  37. K.-C. Toh and L.N. Trefethen. Calculation of pseudospectra by the Arnoldi iteration. SIAM J. Sci. Comput., 17(1):1-15, 1996.
  38. L.N. Trefethen. Pseudospectra of matrices. In D.F. Griffiths and G.A. Watson, editors, Nu- merical Analysis 1991, Proc. 14th Dundee Conf., pages 234-266. Essex, UK: Longman Sci. and Tech., 1991.
  39. L.N. Trefethen. Computation of pseudospectra. In Acta Numerica 1999, volume 8, pages 247-295. Cambridge University Press, 1999.
  40. T. Wright. Eigtool: A graphical tool for nonsymmetric eigenproblems, Dec. 2002. At the Oxford University Computing Laboratory site http://web.comlab.ox.ac.uk/pseudospectra/eigtool.
  41. T. Wright and L. N. Trefethen. Large-scale computation of pseudospectra using ARPACK and Eigs. SIAM J. Sci. Comp., 23(2):591:605, 2001.
  42. T.G. Wright. Algorithms and Software for Pseudospectra. PhD thesis, University of Oxford, 2002.