Structured Pseudospectra for Small Perturbations
2011, SIAM Journal on Matrix Analysis and Applications
https://doi.org/10.1137/090774744Abstract
In this paper we study the shape and growth of structured pseudospectra for small matrix perturbations of the form A A ∆ = A + B∆C, ∆ ∈ ∆, ∆ ≤ δ. It is shown that the properly scaled pseudospectra components converge to non-trivial limit sets as δ tends to 0. We discuss the relationship of these limit sets with µ-values and structured eigenvalue condition numbers for multiple eigenvalues.
References (43)
- Burke, J. V.; Lewis, A. S.; Overton, M. L.: Convexity and Lipschitz behavior of small pseu- dospectra. SIAM J. Matrix Anal. Appl. 29, No. 2, 586-595 (2008).
- Burke, J. V.; Lewis, A. S.; Overton, M. L.: Spectral conditioning and pseudospectral growth. Numer. Math. 107, No. 1, 27-37 (2007).
- Burke, J. V.; Lewis, A. S.; Overton, M. L.: Optimization and pseudospectra, with applications to robust stability. SIAM J. Matrix Anal. Appl. 25, No. 1, 80-104 (2003).
- Bernhardsson, B.; Rantzer, A.; Qiu, L.: Real perturbation values and real quadratic forms in a complex vector space. Linear Algebra Appl. 270, 131-154 (1998)
- Bora, S.; Structured eigenvalue conditioning and backward error of a class of polynomial eigen- value problems. MATHEON-Report 406. http://www.matheon.de/research/ . 2007.
- Bora, S.; Mehrmann, V.: Linear Perturbation Theory for Structured Matrix Pencils Arising in Control Theory. SIAM J. Matrix Anal. Volume 28:148 -169 (2006).
- Böttcher, A.; Embree, M.; Sokolov, V.I.: The spectra of large Toeplitz band matrices with a randomly perturbed entry. Mathematics of Computation 72, 1329-1348 (2003).
- Byers, R.; Kressner, D.: On the condition of a complex eigenvalue under real perturbations. BIT 44, No.2, 209-214 (2004).
- Chaitin-Chatelin, F.; Harrabi, A.; Ilahi, A.: About Hölder condition numbers and the stratifi- cation diagram for defective eigenvalues. Math. Comput. Simul. 54, No.4-5, 397-402 (2000).
- Chatelin, F.: Eigenvalues of matrices. Chichester: John Wiley & Sons, 1993.
- Chaitin-Chatelin, F.; Frayssé, V.: Lectures on finite precision computations. SIAM, Society for Industrial and Applied Mathematics, 1996.
- Chen, J.; Fan, M.; Nett, C. N.: Structured singular values and stability analysis of uncertain polynomials. I: The generalized µ. Syst. Control Lett. 23, No.1, 53-65 (1994).
- Embree, M.; Trefethen, L.N.: The Pseudospectra gateway. Web site: http://www.comlab.ox.ac.uk/pseudospectra.
- Gallestey, E.: Theory and Numerics of Spectral Value sets. Ph. D. thesis, University of Bremen, 1998.
- Gracia, J.-M.: Multiplicities of pseudoeigenvalues, Presentation ILAS04, Coimbra, July 20, 2004. Available from http://www.vc.ehu.es/campus/centros/farmacia/deptos-f/depme/gracia2.htm
- Graillat, S.; Tisseur, F.: Structured condition numbers and backward errors in scalar product spaces. Electron. J. Linear Algebra 15, 159-177, electronic only (2006).
- Higham, N.; Tisseur, F.: More on Pseudospectra for Polynomial Eigenvalue Problems and Applications in Control Theory, Linear Algebra Appl., 351-352:435-453, 2002.
- Hinrichsen, D.; Kelb, B.: Spectral value sets: A graphical tool for robustness analysis. Syst. Control Lett. 21, No.2, 127-136 (1993).
- Hinrichsen, D.; Pritchard, A. J.: Mathematical Systems Theory I. Texts in Applied Mathemat- ics 48. Springer, 2005.
- Hinrichsen, D.; Karow, M.; Pritchard A.J.: Interconnected systems with uncertain couplings: explicit formulae for -values, spectral value sets and stability radii. SIAM J. Control Opt. 45(3):856-884, 2006.
- Karow, M.: Eigenvalue condition numbers and a formula of Burke, Lewis and Overton. Electron. J. Linear Algebra 15, 143-153, electronic only (2006).
- Karow, M.: Geometry of spectral value sets. Ph.D. thesis, University of Bremen, July 2003.
- Karow, M.: µ-values and spectral value sets for linear perturbation classes defined by a scalar product. MATHEON-Report 406. http://www.matheon.de/research/ . 2007.
- Karow, M.: Structured Pseudospectra and the condition of a nonderogatory eigenvalue. MATHEON-Report 407. http://www.matheon.de/research/ . 2007.
- Karow, M.; Kressner, D.; Tisseur, F.: Structured eigenvalue condition numbers. SIAM J. Matrix Anal. Appl., 2006.
- Kato, T.: Perturbation theory for linear operators. Springer, 1980.
- Kressner, D.; Peláez, M. J.; Moro, J.: Structured Hölder condition numbers for multiple eigen- values. Uminf report, Department of Computing Science, Umea University, Sweden, Octo- ber 2006.
- Lewis, A. S.; Pang, C. H. J.: Variational Analysis of Pseudospectra SIAM J. Optim. Volume 19, Issue 3, pp. 1048-1072 (2008)
- Noschese, S.; Pasquini, L.: Eigenvalue patterned condition numbers: Toeplitz and Hankel cases. J. Comput. Appl. Math. 206, No. 2, 615-624 (2007).
- Noschese, S.; Pasquini, L.: Eigenvalue condition numbers: zero-structured versus traditional. J. Comput. Appl. Math. 185(1):174-189, 2006.
- Moro, J.; Burke, J. V.; Overton, M. L.: On the Lidskii-Vishik-Lyusternik perturbation theory for eigenvalues of matrices with arbitrary Jordan structure. SIAM J. Matrix Anal. Appl. 18(4):793-817, 1997.
- Packard, A.; Doyle, J.: The complex structured singular value. Automatica 29(1):71-109, 1993.
- Peláez, M. J.; Moro J.: Structured condition numbers of multiple eigenvalues. Proceedings in Applied Mathematics and Mechanics, 6(1):67-70, 2006.
- Qiu, L.; Bernhardsson, B.; Rantzer, A.; Davison, E. J.; Young, J. C.; Doyle, J.: A Formula for Computation of the Real Stability Radius. Automatica 31(6):879-890, 1995.
- Rice, J. R.: A theory of condition. SIAM J. Numer. Anal. 3, 287-310 (1966).
- Rump, S. M.: The sign-real spectral radius and cycle products. Linear Algebra Appl. 279, No.1-3, 177-180 (1998).
- Rump, S. M.: Eigenvalues, pseudospectrum and structured perturbations. Linear Algebra Appl., 413:567-593, 2006.
- Rump, S. M.; Sekigawa, H.: The ratio between the Toeplitz and the unstructured condition number. to appear, 2006.
- Stewart, G. W.; Sun, J.: Matrix Perturbation Theory. Academic Press, San Diego, 1990.
- Tisseur, F.: A chart of backward errors for singly and doubly structured eigenvalue problems. SIAM J. Matrix Anal. Appl. 24, No.3, 877-897 (2003).
- Trefethen, L. N.; Embree, M.: Spectra and pseudospectra. The behavior of nonnormal matrices and operators. Princeton University Press. (2005).
- Young, P. M.: Structured singular value approach for systems with parametric uncertainty. Int. J. Robust Nonlinear Control 11, No.7, 653-680 (2001).
- Zhou, K.; Doyle, J. C.; Glover, K.: Robust and optimal control. Upper Saddle River, NJ: Prentice Hall, 1996.