On the Algebraization of Many-Sorted Logics
Lecture Notes in Computer Science
https://doi.org/10.1007/978-3-540-71998-4_2Abstract
The theory of abstract algebraic logic aims at drawing a strong bridge between logic and universal algebra, namely by generalizing the well known connection between classical propositional logic and Boolean algebras. Despite of its successfulness, the current scope of application of the theory is rather limited. Namely, logics with a many-sorted language simply fall out from its scope. Herein, we propose a way to extend the existing theory in order to deal also with many-sorted logics, by capitalizing on the theory of many-sorted equational logic. Besides showing that a number of relevant concepts and results extend to this generalized setting, we also analyze in detail the examples of first-order logic and the paraconsistent logic C1 of da Costa.
References (21)
- W. Blok and D. Pigozzi. Algebraizable logics. Memoirs of the AMS, 77(396), 1989.
- W. Blok and D. Pigozzi. Algebraic semantics for universal horn logic without equality. In Universal algebra and quasigroup theory, Lect. Conf., Jadwisin/Pol. 1989, volume 19, pages 1-56. 1992.
- C. Caleiro, W. Carnielli, M. Coniglio, A. Sernadas, and C. Ser- nadas. Fibring non-truth-functional logics: Completeness preserva- tion. Journal of Logic, Language and Information, 12(2):183-211, 2003.
- W. A. Carnielli and L. P. de Alcantara. Paraconsistent algebras. Studia Logica, (43):79-88, 1984.
- W. A. Carnielli and J. Marcos. A taxonomy of C-systems. In W. A. Carnielli, M. E. Coniglio, and I. M. L. D'Ottaviano, editors, Paracon- sistency: The logical way to the inconsistent, volume 228 of Lecture Notes in Pure and Applied Mathematics, pages 1-94. 2002.
- J. Czelakowski. Protoalgebraic logics, volume 10 of Trends in Logic- Studia Logica Library. Kluwer Academic Publishers, 2001.
- N. da Costa. Opérations non monotones dans les treillis. Comptes Rendus de l'Academie de Sciences de Paris, (263):A423-A429, 1966.
- N. da Costa. On the theory of inconsistent formal systems. Notre Dame Journal of Formal Logic, 15:497-510, 1974.
- J. Font, R. Jansana, and D. Pigozzi. A survey of abstract algebraic logic. Studia Logica, 74(1-2):13-97, 2003.
- Joseph Goguen and Grant Malcolm. A hidden agenda. Theoretical Computer Science, 245(1):55-101, 2000.
- L. Henkin, J. D. Monk, and A. Tarski. Cylindric algebras. Studies in Logic. North-Holland Publishing Company, 1971.
- B. Herrmann. Characterizing equivalential and algebraizable logics by the leibniz operator. Studia Logica, (57):419-436, 1996.
- R. Lewin, I. Mikenberg, and M. Schwarze. C1 is not algebraizable. Notre Dame Journal of Formal Logic, 32(4):609-611, 1991.
- M. Martins. Behavioral reasoning in generalized hidden logics. Phd Thesis. Faculdade de Ciências, University of Lisbon, 2004.
- P. Mateus and A. Sernadas. Weakly complete axiomatization of ex- ogenous quantum propositional logic. Information and Computation, 204(5):771-794, 2006. ArXiv math.LO/0503453.
- C. Mortensen. Every quotient algebra for C1 is trivial. Notre Dame Journal of Formal Logic, 21:694-700, 1980.
- T. Mossakowski, A. Tarlecki, and W. Paw lowski. Combining and representing logical systems using model-theoretic parchments. In Recent Trends in Algebraic Development Techniques, volume 1376 of LNCS, pages 349-364. Springer-Verlag, 1998.
- Grigore Roşu. Hidden Logic. PhD thesis, University of California at San Diego, 2000.
- A. Sernadas, C. Sernadas, and C. Caleiro. Fibring of logics as a cat- egorial construction. Journal of Logic and Computation, 9(2):149- 179, 1999.
- G. Voutsadakis. Categorical abstract algebraic logic: algebraizable institutions. In Applied Categorical Structures, volume 10 (6), pages 531-568. Springer-Verlag, 2002.
- R. Wójcicki. Theory of Logical Calculi. Synthese Library. Kluwer Academic Publishers, 1988.