Academia.eduAcademia.edu

Outline

Many-Sorted Logic

2022

Abstract

This short text contains a rigorous introduction to mathematical logic: Many-sorted Languages are the natural way of formulating mathematical theories. E.g. Category Theory uses two kinds (= sorts) of objects: Sets and classes. Incidence Geometry uses points and lines, and so on. We present a formalism of deduction in many-sorted languages and introduce the notion of models. The main results are the correctness and completeness theorems, the compactness theorem and the theorem of Lindenbaum, all in the many-sorted case. This introduction follows the lines of U. Felgner of the Univerisity of Tübingen, who found this extremely elegant formalism. The autor's contribution was to expand this formalism from one-sorted logic to many-sorted logic.

References (9)

  1. John L. Bell and Moshe Machover, A Course in Mathematical Logic, North Holland Publishing Company, Amsterdam, 1977.
  2. Herbert B. Enderton, A mathematical Introduction to Logic (2nd edition), Academic Press, London, 2001. Available at https://archive.org/details/mathematical-introduction-to-logic-herbe/mode/2up.
  3. Ulrich Felgner, Modelltheoretische Algebra (lecture notes), Eberhard Karls Universität Tübingen, Tübingen, 1993.
  4. Kurt Gödel, Über die Vollständigkeit des Logikkalküls (1928), 136-140. Available at https://www.researchgate. net/publication/380197149_Godels_Doktorarbeit_1928-30_Die_Vollstandigkeit_der_Axiome_des_logischen_ Funktionenkalkuls.
  5. Leon Henkin, The Completeness of the First-Order Functional Calculus, Journal of Symbolic Logic 14 (1949), 159-166.
  6. Georg Kreisel and Jean-Louis Krivine, Model Theory, Springer-Verlag, Berlin, 1972.
  7. Patrick Morandi, Field and Galois Theory, Springer Verlag, Graduate Texts in Mathematics 167, New York, 1996.
  8. Mojzesz Presburger, Über die Vollständigkeit eines gewissen Systems der Arithmetik ganzer Zahlen, in welcher die Addition als einzige Operation hervortritt, Comptes-rendus du premiére Congrés des Mathémaciens des Pays Slaves (1929), 92-101.
  9. A. Bernhard Zeidler, Abstract and Commutative Algebra, 2025. Available at https://www.academia.edu/120645082/ Abstract_and_Commutative_Algebra.