Academia.eduAcademia.edu

Outline

Behavioral Algebraization of Logics

2009, Studia Logica

https://doi.org/10.1007/S11225-009-9163-8

Abstract

We introduce and study a new approach to the theory of abstract algebraic logic (AAL) that explores the use of many-sorted behavioral logic in the role traditionally played by unsorted equational logic. Our aim is to extend the range of applicability of AAL towards providing a meaningful algebraic counterpart also to logics with a manysorted language, and possibly including non-truth-functional connectives. The proposed behavioral approach covers logics which are not algebraizable according to the standard approach, while also bringing a new algebraic perspective to logics which are algebraizable using the standard tools of AAL. Furthermore, we pave the way towards a robust behavioral theory of AAL, namely by providing a behavioral version of the Leibniz operator which allows us to generalize the traditional Leibniz hierarchy, as well as several well-known characterization results. A number of meaningful examples will be used to illustrate the novelties and advantages of the approach.

References (44)

  1. Avron, A., 'Non-deterministic matrices and modular semantics of rules', in Logica Universalis, Birkhäuser, 2005, pp. 149-167.
  2. Béziau, J-Y., 'Non truth-functional many-valuedness', in Aspects of universal logic, vol. 17 of Travaux Log., Univ. Neuchâtel, Neuchâtel, 2004, pp. 199-218.
  3. Blok, W., and D. Pigozzi, 'Algebraizable logics', Memoirs of the AMS, 77 (1989), 396.
  4. Blok, W., and D. Pigozzi, 'Algebraic semantics for universal Horn logic with- out equality', in Universal algebra and quasigroup theory, Lect. Conf., Jadwisin/Pol. 1989, vol. 19, 1992, pp. 1-56.
  5. Burris, S., and H. P. Sankappanavar, A course in universal algebra., Graduate Texts in Mathematics, Vol. 78. New York -Heidelberg Berlin: Springer-Verlag., 1981.
  6. Caleiro, C., W. Carnielli, M. Coniglio, A. Sernadas, and C. Sernadas, 'Fib- ring non-truth-functional logics: Completeness preservation', Journal of Logic, Lan- guage and Information, 12 (2003), 2, 183-211.
  7. Caleiro, C., and R. Gonc ¸alves, 'On the algebraization of many-sorted logics', in J. Fiadeiro, and P.-Y. Schobbens, (eds.), Recent Trends in Algebraic Develop- ment Techniques -Selected Papers, vol. 4409 of Lecture Notes in Computer Science, Springer-Verlag, 2007, pp. 21-36.
  8. Caleiro, C., and R. Gonc ¸alves, 'An algebraic perspective on valuation semantics', Preprint, SQIG -IT and IST -TU Lisbon, 2008. Submitted for publication, Abstract to appear in Bulletin of Symbolic Logic.
  9. Caleiro, C., and R. Gonc ¸alves, 'Behavioral algebraization of da Costa's C- systems', Journal of Applied Non-Classical Logics, (2008). To appear.
  10. Carnielli, W. A., and L. P. de Alcantara, 'Paraconsistent algebras', Studia Logica, (1984), 43, 79-88.
  11. Czelakowski, J., Protoalgebraic logics, vol. 10 of Trends in Logic-Studia Logica Library, Kluwer Academic Publishers, 2001.
  12. Czelakowski, J., and R. Jansana, 'Weakly algebraizable logics', J. Symbolic Logic, 65 (2000), 2, 641-668.
  13. Czelakowski, J., and D. Pigozzi, 'Amalgamation and interpolation in abstract al- gebraic logic.', in X. Caicedo et al. (ed.), Models, algebras, and proofs. Marcel Dekker. Lect. Notes Pure Appl. Math. 203, 1999, pp. 187-265.
  14. da Costa, N., Sistemas Formais Inconsistentes, Cathedra Thesis, UFPR, Published by Editora UFPR in 1993, Brazil, 1963.
  15. da Costa, N., 'Opérations non monotones dans les treillis', Comptes Rendus de l'Academie de Sciences de Paris, (1966), 263, A423-A429.
  16. da Costa, N., 'On the theory of inconsistent formal systems', Notre Dame Journal of Formal Logic, 15 (1974), 497-510.
  17. da Costa, N., and J-Y. Béziau, 'Théorie de la valuation', Logique et Anal. (N.S.), 37 (1994), 146, 95-117.
  18. Dunn, J. M., 'Gaggle theory: an abstraction of Galois connections and residuation, with applications to negation, implication, and various logical operators', in Logics in AI (Amsterdam, 1990), vol. 478 of Lecture Notes in Comput. Sci., Springer, Berlin, 1991, pp. 31-51.
  19. Font, J., R. Jansana, and D. Pigozzi, 'A survey of abstract algebraic logic', Studia Logica, 74 (2003), 1-2, 13-97.
  20. Font, J. M., and R. Jansana, 'Leibniz filters and the strong version of a protoal- gebraic logic.', Arch. Math. Logic, 40 (2001), 6, 437-465.
  21. Goguen, J., and G. Malcolm, 'A hidden agenda', Theoretical Computer Science, 245 (2000), 1, 55-101.
  22. Gonc ¸alves, R., Behavioral algebraization of logics, Phd Thesis, Insti- tuto Superior Técnico, Technical University of Lisbon, 2008. Available from http://wslc.math.ist.utl.pt/ftp/pub/GoncalvesR/08-G-PhDthesis.pdf.
  23. Herrmann, B., 'Characterizing equivalential and algebraizable logics by the Leibniz operator', Studia Logica, (1996), 57, 419-436.
  24. Kracht, M., 'On extensions of intermediate logics by strong negation.', J. Philo- sophic Logic, 27 (1998), 1, 49-73.
  25. Lewin, R., I. Mikenberg, and M. Schwarze, 'C1 is not algebraizable', Notre Dame Journal of Formal Logic, 32 (1991), 4, 609-611.
  26. Martins, M., Behavioral reasoning in generalized hidden logics, Phd Thesis, Facul- dade de Ciências, University of Lisbon, 2004.
  27. Martins, M. A., 'Closure properties for the class of behavioral models', Theor. Comput. Sci., 379 (2007), 1-2, 53-83.
  28. Mateus, P., and A. Sernadas, 'Weakly complete axiomatization of exogenous quan- tum propositional logic', Information and Computation, 204 (2006), 5, 771-794.
  29. Meinke, K., and J. V. Tucker, 'Universal algebra', in Handbook of logic in computer science, vol. 1 of Handb. Log. Comput. Sci., Oxford Univ. Press, New York, 1992, pp. 189-411.
  30. Mortensen, C., 'Every quotient algebra for C1 is trivial', Notre Dame Journal of Formal Logic, 21 (1980), 694-700.
  31. Nelson, D., 'Constructible falsity', J. Symbolic Logic, 14 (1949), 16-26.
  32. Prucnal, T., and A. Wroński, 'An algebraic characterization of the notion of structural completness', Bull. Sect. Logic, Polish Acad. Sci., Inst. Philos. and Socio., (1974), 3, 30-33.
  33. Rasiowa, H., An algebraic approach to non-classical logics, Studies in logic and the foundations of mathematics, 78. Amsterdam : North-Holland, 1974, 1981.
  34. Reichel, H., 'Behavioural validity of conditional equations in abstract data types', in Contributions to general algebra 3, Proc. Conf., Vienna 1984, 1985, pp. 301-324.
  35. Rosu, G., 'A Birkhoff-like axiomatizability result for hidden algebra and coalgebra', in B. Jacobs et al, (ed.), Proc. of CMCS'98, vol. 11 of Electronic Notes in Theoretical Computer Science, Elsevier Science, 1998, pp. 179-196.
  36. Rosu, G., Hidden Logic, Ph.D. thesis, University of California at San Diego, 2000.
  37. Rosu, G., 'Behavioral abstraction is hiding information', Theoretical Computer Sci- ence, 327 (2004), 1-2, 197-221.
  38. Sendlewski, A., 'Some investigations of varieties of N -lattices.', Studia Logica, 43 (1984), 257-280.
  39. Sendlewski, A., 'Nelson algebras through Heyting ones. I.', Studia Logica, 49 (1990), 1, 105-126.
  40. Sernadas, A., C. Sernadas, and C. Caleiro, 'Fibring of logics as a categorial construction', Journal of Logic and Computation, 9 (1999), 2, 149-179.
  41. Spinks, M., and R. Veroff, ' Constructive Logic with Strong Negation is a Sub- structural Logic. I.', Studia Logica, 88 (2008), 325-248.
  42. Tarski, A., 'Fundamentale begriffe der methodologie der deduktiven wissenschaften. i', Monatshefte für Mathematik and Physik, 37 (1930), 361-404. English translaction in: Fundamental concepts of the methodology of the deductive systems.
  43. Vakarelov, D., 'Notes on N -lattices and constructive logic with strong negation.', Studia Logica, 36 (1977), 109-125.
  44. Wójcicki, R., Theory of Logical Calculi, Synthese Library, Kluwer Academic Pub- lishers, 1988. Carlos Caleiro SQIG-Instituto de Telecomunicações and Department of Mathematics IST, TU Lisbon, Portugal ccal@math.ist.utl.pt Ricardo Gonc ¸alves SQIG-Instituto de Telecomunicações and Department of Mathematics IST, TU Lisbon, Portugal rgon@math.ist.utl.pt Manuel Martins Department of Mathematics U Aveiro, Portugal martins@ua.pt