Academia.eduAcademia.edu

Outline

Optimization of killer assays for yeast selection protocols

Revista Argentina de microbiología

https://doi.org/10.1590/S0325-75412010000400011

Abstract

A new optimized semiquantitative yeast killer assay is reported for the first time. The killer activity of 36 yeast isolates belonging to three species, namely, Metschnikowia pulcherrima, Wickerhamomyces anomala and Torulaspora delbrueckii, was tested with a view to potentially using these yeasts as biocontrol agents against the wine spoilage species Pichia guilliermondii and Pichia membranifaciens. The effectiveness of the classical streak-based (qualitative method) and the new semiquantitative techniques was compared. The percentage of yeasts showing killer activity was found to be higher by the semiquantitative technique (60%) than by the qualitative method (45%). In all cases, the addition of 1% NaCl into the medium allowed a better observation of the killer phenomenon. Important differences were observed in the killer capacity of different isolates belonging to a same killer species. The broadest spectrum of action was detected in isolates of W. anomala NPCC 1023 and 1025, and ...

References (44)

  1. Aguiar C, Lucas C. Yeasts Killer/Sensitivity Phenotypes and Halotolerance. Food Technol Biotechnol 2000; 38: 39-46.
  2. Boone C, Sdicu AM, Wagner J, Degre R, Sánchez C, Bus- sey H. Integration of the yeast K1 killer toxin gene into the genome of marked wine yeasts and its effect on vinification. A J enol and Vitic 1990; 41: 37-42.
  3. Buzzini P, Martini A. Differential growth inhibition as a tool to increase the discriminating power of killer toxin sensitivity in fingerprinting of yeasts. FEMS Microbiol Lett 2000; 193: 31-6.
  4. Buzzini P, Turchetti B, Vaughan-Martini AE. The use of Killer sensitivity patterns for biotyping yeast isolates, the state of the art, potentialities and limitations. FeMS Microbiol Lett 2007; 7: 749-60.
  5. Comitini F, Ingeniis J, pepe L, Mannazzu L, Ciani M. Pichia anomala and Kluyveromyces wickerhamii killer toxins as new tools against Dekkera/ Brettanomyces spoilage yeasts. FeMS Microbiol Lett 2004; 238: 235-40.
  6. De Ingeniis J, Raffaelli N, Ciani M, Mannazzu I. Pichia anomala DBVPG 3003 secretes a ubiquitin-like protein that has antimicrobial activity. Appl environ Microbiol 2009; 75: 1129-34.
  7. golubev W I. Mycocins killer toxins. In: Kurtzmann Cp, Fell JW,. editors. The Yeasts, A Taxonomic study. Amsterdam, elseiver Sci. publ, 1998 p. 55-62.
  8. golubev WI. Antagonistic interactions among yeasts. In: gábor p, Rosa C, editors. Biodiversity and ecophysiology of Yeasts. Berlin, Heiderlberg, Springer, 2006, p. 187-219.
  9. Goretti M, Turchetti B, Buratta M, Branda E, Corazzi L, Vaughan-Martini A, et al. In vitro antimycotic activity of a Williopsis saturnus killer protein against food spoilage yeasts. Int J Food Microbiol 2009; 131: 178-82.
  10. Gulbiniene G, Kondratiene L, Jokantaite T, Serviene E, Melvydas V, petkuniene g. occurrence of killer yeast iso- lates in fruit and berrywine yeast populations. Food Technol Biotechnol 2004; 42: 159-63.
  11. Hernández A, Martín A, Córdoba M G, Benito MJ, Aranda E, Pérez-Nevado F. Determination of killer activity in yeasts isolated from the elaboration of seasoned green table olives. Int J Food Microbiol 2008; 121: 178-88.
  12. Hodgson VJ, Button D, Walker GM. Anti-candida activity of a novel killer toxin from yeast Williopsis mrakii. Microbiology 1995; 141: 2003-12.
  13. Izgu F, Altinbay D. Killer toxins of certain yeast isolates have potential growth inhibitory activity on gram-positive pathogenic bacteria. Microbios 1997; 89: 15-22.
  14. Kapsopoulou K, Barouti e, Makrioniti A, Kostaki K. occurrence of Saccharomyces cerevisiae killer yeasts in wine-producing areas of greece. World J Microbiol Biotechnol 2008; 24: 1967-71.
  15. Liu SQ, Marlene Tsao M. Inhibition of spoilage yeasts in cheese by killer yeast Williopsis saturnus var saturnus. Inter J Food Microbiol 2009;131: 280-2.
  16. LLorente P, Marquina D, Santos A, Peinado JM, Spencer- Martins I. effect of salt on the killer phenotype of yeasts from olive brines. Appl environ Microbiol 1997; 63: 1165-67.
  17. Lopes CA, Rodríguez Me, Sangorrín Mp, Querol A, Caballero AC. patagonian wines, the selection of an indigenous yeast starter. J Indus Microbiol Biotechnol 2007; 348: 539-46.
  18. Lopes CA, Rodríguez Me, Sangorrín Mp, Querol A, Caba- llero AC. patagonian wines, implantation of an indigenous isolate of Saccharomyces cerevisiae in fermentations con- ducted in traditional and modern cellars. J Indus Microbiol Biotechnol 2007; 34: 139-49.
  19. Lopes CA, Sáez JS, Sangorrín MP. Differential response of Pichia guilliermondii spoilage isolates to biological and physical-chemical factors prevailing in patagonian wine fermentations. Can J Microbiol 2009; 55: 801-9.
  20. Loureiro V, Malfeito-Ferreira M. Spoilage yeasts in the wine industry. Int J Food Microbiol 2003; 86: 23-50.
  21. MacDonald J C. Biosynthesis of Pulcherriminic. Acid. Bio- chem J 1965; 96: 533-8.
  22. Magliani W, Conti S, Travassos L R, Polonelli L. From yeast killer toxins to antibiobodies and beyond. FeMS Microbiol Lett 2008; 288: 1-8.
  23. Makower M, Bevan EA. The inheritance of a killer character in yeast Saccharomyces cerevisiae. In: geerts N editor. gene- tics Todays, Proceedings of the 11 th International Congress of Genetics, MacMillan, The Hague, 1963, p. 202-3,.
  24. Marquina D, Santos A, Peinado JM. Biology of killer yeasts. Int Microbiol 2002; 5: 65-71.
  25. Miller MW, Phaff HJ. Metschnikowia Kamienski. In: Kurtz- man CP, Fell JP, editors. The Yeasts. Amsterdam, Elsevier 1998, p. 256-67.
  26. Musmanno RA, Di Maggio T, Coratza G. Studies on strong and weak killer phenotypes of wine yeasts, production, activity of toxin in must, and this effect in mixed culture fermentation. J Indus Microbiol Biotechnol 1999; 87: 932-8.
  27. palpacelli V, Ciani V, Rossini g. Activity of different killer yeasts on isolates of yeast species undesirable in the food industry. FeMS Microbiol Lett 1991; 168: 75-8.
  28. Pérez F, Ramírez M, Regodón JA. Influence of killer isolates of Saccharomyces cerevisiae on wine fermentation. Antonie van Leeuwenhoeck 2001; 79: 393-9
  29. Rodríguez ME, Lopes CA, van Broock MR, Vallés S, Ramón D, Caballero, AC. Screening and typing of patagonian wine yeasts for glycosidase activity. J Appl Microbiol 2004; 96: 84-95.
  30. Sangorrín Mp, Zajonskovsky I, Lopes CA, Rodríguez Me, van Broock MR, Caballero AC. Killer behaviour in wild wine yeasts associated with Merlot and Malbec type musts spontaneously fermented from Northwestern patagonia Argentina. J Basic Microbiol 2001; 41: 105-13.
  31. Sangorrín Mp, Zajonskovsky I, van Broock MR, Caballero AC. The use of killer biotyping in an old patagonian winery yeast ecological survey. World J Microbiol Biotechnol 2002; 18: 115-20.
  32. Sangorrín MP, Lopes CA, Giraudo MR, Caballero AC. Diver- sity and killer behaviour of indigenous yeasts isolated from the fermentation vat surfaces in four patagonian wineries. Int J Food Microbiol 2007; 119: 351-7.
  33. Sangorrín Mp, Lopes CA, Jofré V, Querol A, Caballero AC. Spoilage yeasts associated with patagonian cellars, characterization and potential biocontrol based on killer inte- ractions. World J Microbiol Biotechnol 2008; 24: 945-53.
  34. Santos A, Marquina D, Barroso J, Peinado JM. 1-6-b-D glu- can as the cell wall binding site for Debaryomyces hansenii killer toxin. Lett Appl Microbiol 2002; 34: 95-9.
  35. Santos A, San Mauro M, Bravo E, Marquina D. PMKT2, a new killer toxin from Pichia membranifaciens, and its promi- sing biotechnological properties for control of the spoilage yeast Brettanomyces bruxellensis. Microbiology 2009; 155: 624-34.
  36. Schaffrath R, Meinhardt F. Kluyveromyces lactis zymocin and other plasmid-encoded yeast killer toxins. In: Schmitt MJ, Schaffrath R, editors. Microbial Protein Toxins, Berlin Heidelberg, Springer-Verlag, 2005, p. 133-55.
  37. Schmitt MJ, Breinig F. The viral killer system in yeast, from molecular biology to application. FeMS Microbiol Rev 2002; 26: 257-76.
  38. Stratford M. Food and beverage spoilage yeast. In: Querol, A, Feet G, editors. Yeasts in food and beverages II. Germany, Berlin Heidelberg, Springer-Verlag, 2006, p. 335-80.
  39. Suzuki C, Yamada K, Okada N, Nikkuni S. Isolation and characterization of halotolerant killer yeasts from fermented foods. Agric Biol Chem 1989; 53: 2593-7.
  40. Vagnoli P, Musmanno RA, Cresti S, Di Maggio T, Coratza g. occurrence of killer yeasts in spontaneous wine fer- mentations from the Tuscany region of Italy. Appl Environ Microbiol 1993; 59: 4037-43.
  41. Van Vuuren HJJ, Jacobs CJ. Killer yeasts in the wine in- dustry, a review. Am J enol Vitic 1992; 43: 119-28.
  42. Walker G, McLeod A, Hodgson V. Interactions between killer yeast and pathogenic fungi. FeMS Microbiol Lett 1995; 127: 213-22.
  43. Yap NA, de Barros Lopes M, Langridge P, Henschke PA. The incidence of killer activity of non-Saccharomyces yeasts towards indigenous yeast species of grape must, potential application in wine fermentation. J Appl Microbiol 2000; 89: 381-9.
  44. Young TW. Killer yeasts, In: Rose AH, Harrison, JS, editors. The yeasts. London, United Kingdom, Academic Press, 1987, p. 131-64.