Translating Euclid: Designing a Human-Centered Mathematics
2013, Synthesis Lectures on Human-centered Informatics
Abstract
Translating Euclid reports on an effort to transform geometry for students from a stylus-and-claytablet corpus of historical theorems to a stimulating computer-supported collaborative-learning inquiry experience. The origin of geometry was a turning point in the pre-history of informatics, literacy, and rational thought. Yet, this triumph of human intellect became ossified through historic layers of systematization, beginning with Euclid's organization of the Elements of geometry. Often taught by memorization of procedures, theorems, and proofs, geometry in schooling rarely conveys its underlying intellectual excitement. The recent development of dynamic-geometry software offers an opportunity to translate the study of geometry into a contemporary vernacular. However, this involves transformations along multiple dimensions of the conceptual and practical context of learning. Translating Euclid steps through the multiple challenges involved in redesigning geometry education to take advantage of computer support. Networked computers portend an interactive approach to exploring dynamic geometry as well as broadened prospects for collaboration. The proposed conception of geometry emphasizes the central role of the construction of dependencies as a design activity, integrating human creation and mathematical discovery to form a human-centered approach to mathematics. This book chronicles an iterative effort to adapt technology, theory, pedagogy and practice to support this vision of collaborative dynamic geometry and to evolve the approach through on-going cycles of trial with students and refinement of resources. It thereby provides a case study of a design-based research effort in computer-supported collaborative learning from a human-centered informatics perspective.
References (19)
- Pedagogy: Designing Geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
- 1 Design-Based Research Cycles of Trials . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
- A Trial without Curricular Resources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157
- 3 Overcoming Technological Barriers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159
- 4 Discourse about Math Difficulties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160
- 5 Cycles of Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161
- 6 Curriculum Design Criteria . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
- 7 Practices as Resources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167 10 Practice: Doing Geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171 10.1 A Curriculum of Resources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171 10.2 Building up Geometry from an Intuitive Starting Point . . . . . . . . . . . . . . 172 10.3 The Dependencies of Triangles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177 10.4 Designing Custom Tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179 10.5 The Hierarchy of Possible Triangles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180 10.6 Discovering Dependencies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181 10.7 The Intriguing Centers of Triangles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182 10.8 Transformations, Symmetries, and Proofs . . . . . . . . . . . . . . . . . . . . . . . . . . 183 10.
- 9 Visualizing Similarity and Congruence . . . . . . . . . . . . . . . . . . . . . . . . . . . 185 10.10 From Triangles to Quadrilaterals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186 10.11 Advanced Topics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189 10.12 An Introductory Trajectory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190
- Design-Based Research: Human-Centered Geometry . . . . . . . . . . . . . . . . . . . . . 193 11.1 Design-Based Research . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193 11.2 Formative Assessment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194 11.3 Issues for the Future . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196 11.4 Human-Centered Geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198
- Author Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201
- Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205
- Author's Biography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221
- Logs Log 7.1: The researchers drag points in the diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 Log 7.2: The researchers wonder about the construction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96 Log 7.3: The researchers identify dependencies of the inscribed equilateral triangles. . . . . . . . 98 Log 7.4: The researchers notice while dragging points in the diagram. . . . . . . . . . . . . . . . . . . 99
- Log 7.5: The researchers conjecture about the construction. . . . . . . . . . . . . . . . . . . . . . . . . . . 100 Log 7.6: The researchers construct the dependencies of the inscribed equilateral triangles. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
- Log 7.7: The teachers determine dependencies. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105 Log 7.8: The teachers plan their construction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105 Log 7.9: The teachers confirm that the triangles are equilateral. . . . . . . . . . . . . . . . . . . . . . . . 106
- Log 7.10: The teachers have a key idea. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108 Log 7.11: The teachers conclude their session. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110 Log 7.12: The students explore the triangles. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112 Log 7.13: The students discuss dependencies. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112 Log 7.14: The students construct the first triangle. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
- Log 7.15: The students experiment. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113 Log 7.16: The students view other tabs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114 Log 7.17: The students make a key observation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115 Log 7.18: The students explain their construction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116 Log 7.19: The students explain the dependencies. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117 Log 7.20: The students explore the square. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118 Log 7.21: The students construct the first square. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119 Log 7.22: The students make another key observation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120 Log 7.23: The students test their construction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120 Log 7.24: The students summarize dependencies. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122 Log 8.1: "Wait…. I don't really see"-establishing co-presence. . . . . . . . . . . . . . . . . . . . . . . . 127 Log 8.2: "Like this…."-building intersubjective shared understanding. . . . . . . . . . . . . . . . . 129 Log 8.3: "To get 6n^2"-accomplishing group cognition. . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
- The VMT Project has been supported by the following grants from the US National Science Foundation and the Office of Naval Research: 2003-2006: "Collaboration Services for the Math Forum Digital Library." DUE 0333493. 2003-2009: "Catalyzing & Nurturing Virtual Learning Communities." IERI 0325447. 2005-2008: "Engaged Learning in Online Communities." SBE-0518477. 2007-2009: "Exploring Adaptive Support for Virtual Math Teams." DRL0723580. 2009-2012: "Dynamic Support for Virtual Math Teams." DRL-0835383. 2009-2012: "Theories and Models of Group Cognition." ONR CKI. 2011-2016: "Computer-Supported Math Discourse Among Teachers and Students." DRL-1118773. Although the VMT Project has been a collaborative effort, the author is solely responsible for the views expressed in this book. Gerry Stahl, VMT Project Director and PI Philadelphia, March 16, 2013