Academia.eduAcademia.edu

Outline

Towards a phenomenological definition of the term ‘gel’

1993, Polymer Gels and Networks

https://doi.org/10.1016/0966-7822(93)90020-I

Abstract

The term 'gel' is used so indiscriminately that it has become ambiguous. Existing definitions are reviewed, examples of unfortunate uses of the term are discussed, and important phenomenological characteristics of gels are identified. We propose that the term 'gel' should be limited to systems which fulfil the following phenomenological characteristics: (a) they consist of two or more components one of which is a liquid, present in substantial quantity and (b) they are soft, solid, or solid-like materials. We further propose a definition of the solid-like characteristics of gels in terms of the dynamic mechanical properties, viz. a storage modulus, G'(to), which exhibits a pronounced plateau extending to times at least of the order of seconds and a loss modulus, G"(to), which is considerably smaller than the storage modulus in the plateau region.

References (38)

  1. Graham, T., Liquid diffusion applied to analysis. Phil Trans. Roy. Soc., 151 (1861) 183-224.
  2. Graham, T., On the properties of silicic acid and other analogous colloidal substances. J. Chem. Soc. Lond., 17 (1864) 318-27.
  3. Clark, A. H. & Ross-Murphy, S. B., Structure and mechanical properties of biopolymer gels. Adv. Polym. Sci., 83 (1987) 57-192.
  4. Russo, P. S. (ed.), Reversible Polymeric Gels and Related Systems. ACS Symposium Series 350, American Chemical Society, Washington DC, USA, 1987.
  5. Burchard, W. & Ross-Murphy, S. B. (eds), Physical Networks: Polymers and Gels, Elsevier Applied Science, London, UK, 1990.
  6. Ferry, J. D., Structure and rheology of fibrin networks. In Biological and Synthetic Polymer Networks, ed. O. Kramer. Elsevier Applied Science, London, UK, 1988, pp. 41-55.
  7. Te Nijenhuis, K., Viscoelastic properties of thermoreversible gels. In Physical Networks: Polymers and Gels, ed. W. Burchard & S. B. Ross-Murphy. Elsevier Applied Sc!ence, London, UK, 1990, pp. 15-33.
  8. Staudinger, H. & Husemann, E., Uber hochpolymere Verbindungen, 116. Mitteil.: Uber das begrenzt quellbare Poly-styrol. Ber. Deut. Chem. Ges., 68 (1935) 1618-34.
  9. Wichterlee, O. & Lim, D., Hydrophilic gels for biological use. Nature, 185 (1960) 117-18.
  10. Refojo, M. F., Contact lenses. Kirk-Othmer Encycl. Chem. Techn., 3rd edn, 6 (1979) 720-42.
  11. Hermans, P. H., Gels. In Colloid Science, Vol. II, ed. H. R. Kruyt. Elsevier Publishing Company, Inc., Amsterdam, The Netherlands, 1949, pp. 483-651.
  12. Fricke, J. (ed.), Aerogels. Springer Verlag, Berlin, FRG, 1986.
  13. Rogovina, L. Z., Comparison of the formation and properties of physical and chemical networks prepared in the swollen state. In Physical Networks: Polymers and Gels, ed. W. Burchard & S. B. Ross-Murphy. Elsevier Applied Science, London, UK, 1990, pp. 133-45.
  14. Burchard, W. & Ross-Murphy, S. B., Introduction: Physical gels from synthetic and biological macromolecules. In Physical Networks: Polymers and Gels, ed. W. Burchard & S. B. Ross-Murphy. Elsevier Applied Science, London, UK, 1990, pp. 1-14.
  15. Ross-Murphy, S. B., Physical gelation of synthetic and biological macro- molecules. In Polymer Gels --Fundamentals and Biomedical Applications, ed. D. DeRossi, K. Kajiwara, Y. Osada & A. Yamauchi. Plenum Press, New York, USA.,. 1991, pp. 21-39.
  16. Kratochvil, P., Uber die Anwendung der Lichtstreuungsmethode zum Studium der Alterung von Polymeren. KolI.-Z. Polym., 198 (1964) 95-7.
  17. Gruber, E. & Suhendra, E., Verfolgung der Mikrogelbildung in L6sungen von MakromolekUlen. Progr. Colloid & Polymer Sci., 60 (1976) 220-9.
  18. Eicke, H.-F., Quellet, C. & Xu, G., Atypical gels: Examples of polymer networks in microemulsions. In Physical Networks: Polymers and Gels, ed. W. Burchard & S. B. Ross-Murphy. Elsevier Applied Science, London, UK, 1990, pp. 169-84.
  19. Atkins, P. W., Physical Chemistry, 4th edn. Oxford University Press, Oxford, UK, 1990, p. 706.
  20. Tanaka, T., Gels. In Encyclopedia of Polymer Science and Engineering, Vol. 7, ed. A. Klingsberg & R. Piccininni. John Wiley & Sons, New York, USA, 1987, p. 514.
  21. McKechnie, J. L. (ed.), Webster's New Twentieth Century Dictionary, 2nd edn. The Publishers Guild, Inc., New York, USA, 1966.
  22. Treloar, L. R. G., The Physics of Rubber Elasticity, 3rd edn. Clarendon Press, Oxford, 1975, pp. 15-16.
  23. Kramer, O. & Ferry, J. D., Dynamic Mechanical Properties. In Science and Technology of Rubber, ed. F. R. Eirich. Academic Press, New York, USA, 1978, pp. 179-221.
  24. Lloyd, D. J., The problem of gel structure. In Colloid Chemistry, Vol. 1, ed. J. Alexander. Chemical Catalogue Company, New York, USA, 1926, pp. 767-82.
  25. Flory, P. J., Molecular size distribution in three dimensional polymers. I. Gelation; II. Trifunctional branching units; III. Tetrafunctional branching units. J. Am. Chem. Soc., 63 (1941) 3083, 3091, 3096-100.
  26. Flory, P. J., Constitution of three-dimensional polymers and the theory of gelation. J. Phys. Chem., 46 (1942) 132-40.
  27. Stockmayer, W. H., Theory of molecular size distribution and gel formation in branched polymers. II. General cross linking. J. Chem. Phys., 12 (1944) 125-31.
  28. Stockmayer, W. H., Molecular distribution in condensation polymers. J. Polym. Sci., 9 (1952) 69-71; Errata, 11 (1953) 424.
  29. Bungenberg de Jong, H. G., A survey of the study objects in this volume. In Colloid Science, Vol. II, ed. H. R. Kruyt. Elsevier Publishing Company, Inc., Amsterdam, The Netherlands, 1949, pp. 1-18.
  30. Flory, P. J., Introductory lecture. Disc. Faraday Soc., 57 (1974) 7-18.
  31. Ferry, J. D., Viscoelastic Properties of Polymers, 3rd edn. John Wiley & Sons, New York, USA, 1980, pp. 529-30.
  32. Djabourov, M., Gelation--A review. Polym. International, 25 (1991) 135-43.
  33. Lodge, A. S., Elastic Liquids. Academic Press, London, UK, 1964, pp. 70-1.
  34. Nicolai, T., Brown, W., Hvidt, S. & Heller, K., A comparison of relaxation time distributions obtained from dynamic light scattering and dynamic mechanical measurements for high-molecular-weight polystyrene in en- tangled solutions. Macromolecules, 23 (1990) 5088-96.
  35. Miller, M., Ferry, J. D., Schremp, W. & Eldridge, J. E., Studies of the crosslinking process in gelatin gels. II. Static rigidity and stress relaxation. J. Phys. Coll. Chem., 55 (1951) 1387-400.
  36. Doi, M. & Edwards, S. F., The Theory of Polymer Dynamics. Clarendon Press, Oxford, 1986, pp. 324-40.
  37. Nemoto, N., Schrag, J. L., Ferry, J. D. & Fulton, R. W., Infinite-dilution viscoelastic properties of tobacco mosaic virus. Biopolymers, 14 (1975) 409-17.
  38. Ferry, J. D., Viscoelastic Properties of Polymers, 3rd edn. John Wiley & Sons, New York, USA, 1980, p. 413.