Academia.eduAcademia.edu

Outline

A Perspective on Reversible Gels and Related Systems

1987, American Chemical Society eBooks

https://doi.org/10.1021/BK-1987-0350.CH001

Abstract

The features common to reversible polymer gels of many types are identified and discussed. The nature of the gel state is carefully defined, and a novel classification scheme based on morphology, rather than chemical or mechanistic considerations, is proposed. The article also serves as an overview to some of the more commonly used techniques used in the study of gels, and as an introduction to some of the current trends in reversible gel research. Some speculations regarding future trends in reversible gel research are presented. Of all the physical states, there is something especially elusive about gels. Systems which gel reversibly are particularly difficult to understand, for the requirement is that an enormous transformation of physical state must occur, usually involving only a small portion of the system. Yet an astounding variety of mechanisms can result in reversible gelation, and it seems that a general understanding of reversible gels will not soon be achieved. Perhaps the greatest universality is presently found in the objectives of gel researchers and the obstacles to meeting them (1). The would-be gel researcher must first confirm positively that the system is a gel. Even this isn't always trivial. Next, the conditions under which reversible gelation occurs must be carefully mapped out. Recent controversies show that this matter is often complex, too. After these preliminaries, a structural analysis of the gel is appropriate. Next, it is often of considerable interest to undertake the kinetic study of how the structure forms during gelation-a question which is often the most difficult of all. Finally, we may add such practical concerns as the commercial utility or biological function of the gel.

References (111)

  1. It is this belief which made the symposium and this collection possible.
  2. Lemstra, P. J.; Smith, P. Brit. Polvm. J. 1980, 20, 212.
  3. Smith, P.; Lemstra, P. J.; Booij, H. C. T. Polym. Sci., Polym. Phys. Ed. 1981, 19, 877.
  4. Barham, P. J.; Keller. A. J. Mat. Sci. 1985, 20, 2281.
  5. Domszy, R.C.; Alamo. R.; Edwards. C.O. and Mandelkern, L. Macromolecules 1986, 19, 310.
  6. Most contributors in this book fall into this category.
  7. New methods for analysis and their combined application to complex systems, such as reversible gels, is especially to be encouraged. An inspiring statement along these lines appears in the conclusion of Ref. 95.
  8. Ricka. J.; Tanaka, T. Macromolecules. 1985, 18, 83.
  9. Nicoli, D.; Young, C.; Tanaka, T.; Pollak, Α.; Whitesides G. Macromolecules 1983, 16, 887.
  10. Katayama, S.; Yoshitsugo, H.; Tanaka, T. Macromolecules 1984, 17, 2641.
  11. Ricka. J.; Tanaka, T. Macromolecules 1984, 17, 2916.
  12. Ohmine. I.; Tanaka, T. J. Chem. Phys. 1982, 77, 5725.
  13. Tanaka. T. Science 1982, 218, 467.
  14. Flory, P.J. Disc. Farad. Soc. 1974, 57, 7.
  15. Ferry, J.D., Viscoelastic Properties of Polymers; Wiley: New York, 1961; p 391. The definition of gels has survived through 3 editions (1970; p 557; 1980; p 529).
  16. Takahashi, Α.; Sakai, M.; Kato, T. Polym J. (Tokyo) 1980, 12, 335.
  17. Ferry, J. D. Viscoelastic Properties of Polymers, 3rd ed., Wiley: New York, 1980; pp 537-539.
  18. Admittedly, flow of glaciers depends upon melting at the bottom and break/up. However, the net result is that these large ice masses do flow.
  19. Nossal, R., this book.
  20. Cahn, J.W. J. Chem. Phys. 1965, 42, 93.
  21. Cahn, J.W.; Hillard, J.E. J. Chem. Phys. 1959, 31, 668.
  22. Russo, P. S., Magestro, P.; Miller, W. G., this book.
  23. Mandelkern, L. In Microdomains in Polymer Solutions; Dubin, P. L., Ed.; Plenum: New York, 1985.
  24. Tan, H.; Moet, Α.; Hiltner, Α.; Baer, E. Macromolecules 1983, 16, 28.
  25. Koltisko, B.; Keller, Α.; Litt, M.; Baer, E.; Hiltner, A. Macromolecules 1986, 19, 1207.
  26. Hiltner, Α.; Baer, E. ACS Polym. Prepr. 1986. 27(1), 207.
  27. Clark, J.; Wellinghoff, S. T.; Miller, W. G. ACS Polym. Prepr. 1983, 24(2), 86.
  28. Blum, F. D.; naNagara, Β., this book.
  29. Yang, Y. S.; Geil, P. H. J. Macromol. Sci.-Phys. 1983, B22, 463.
  30. Candau, S. J.; Dormoy, Y.; Hirsch, E.; Mutin, P. H.; Guenet, J. Μ., this book.
  31. Eldridge, J. E.; Ferry, J. D. J. Phys. Chem. 58, 992 (1954).
  32. Green, M. (Brooklyn Polytechnic); personal communication.
  33. Russo, P. S.; Siripanyo, S.; Saunders, M. J.; Karasz, F. E. Macromolecules 1986, 19, 2856.
  34. Tohyama. K.; Miller, W.G. Nature 1981, 289, 813.
  35. Earthquake or hurricane, respectively.
  36. Tirrell, M. Rubber Chem. and Tech. 1984, 57, 522.
  37. Graessley, W.W. Adv. Polym. Sci. 1982, 47, 67.
  38. DeGennes, P.G., Leger, L. Ann. Rev. Phys. Chem. 1982, 33, 49.
  39. Phillies, G. D. J.; Ullmann, G. S.; Ullmann, Κ., Lin, T.-H. J. Chem. Phys. 1985, 82, 5242.
  40. Lodge, T. P.; Wheeler, L. M. Macromolecules 1986, 19, 2983.
  41. Kim. H.; Chang. T.; Yohanan. J. M.; Wang. L.; Yu. H. Macromolecules 1986, 19, 2737.
  42. Quate, C. F. Physics Today 1986, 39(8), 26.
  43. Allen, R.D. Ann. Rev. Biophys. Chem. 1985, 14, 265.
  44. Allen, R.D. Scientific American 1987, 256(2), 42
  45. Arndt-Jovin, D.J.; Robert-Nicoud, M.; Kaufman, S.J.; Jovin, T.M. Science 1985, 230, 4723.
  46. DiGuiseppi, J.; Inman, R.; Ishihara, Α.; Jacobsen, Κ:, Herman, B. Biotechniques 1985, 3, 394.
  47. Kachar, B. Science 1985, 227, 766.
  48. Lewin. R. Science 1985, 230, 1258.
  49. Boyde, A. Science 1985, 230, 1270.
  50. Inouye, S. Video Microscopy; Plenum: New York, 1986.
  51. Kachar, B.; Evans, D. F.; Ninham, B.W. J. Coll. Int. Sci. 1984, 99, 593.
  52. Evans, D. F.; Brady, J.; Kachar, B.; Ninham, B. W. J. Solution Chem. 1985, 14, 141.
  53. Feder, R.; Banton, V.; Sayre, D.; Costa, J.; Baldini, M.; Kim, B. Science 1985, 227, 63.
  54. Bale, M. D.; Muller, M. F.; Ferry, J. D. Biopolymers 1985, 24, 461.
  55. Muller M. F.; Ris, H.; Ferry, J. D. J. Mol. Biol. 1984, 174, 369.
  56. Zasadzinski, J. A. N.; Chu, Α.; Prud'homme, R. K. Macromolecules 1986, 19, 2960.
  57. Terech, P., this book.
  58. Cohen, Y.; Thomas, E. L., this book.
  59. Djabourov, M.; LeBlonde, J., this book.
  60. Thomas, E.L.; Cohen, Y.; slides shown during discussion at this symposium.
  61. Newkome, G. R.; Baker, G. R.; Saunders, M. J.; Russo, P. S.; Gupta, V. K., Yao. Z.; Miller, J. E.; Bouillon, K. J. Chem. Soc., Chem. Commun. 1986, 752.
  62. Light Scattering from Polymer Solutions; Huglin, Μ. Β., Ed.; Academic Press: New York, 1972.
  63. Kerker, Μ., "The Scattering of Light and Other Electromagnetic Radiation"; Academic Press: New York, 1972.
  64. Dynamic Light Scattering; Pecora, R., Ed.; Plenum: New York, 1985.
  65. Stein, R. S.; Han, C. C. Phys. Today 1985, 38(1), 74.
  66. Picot, C. In Static and Dynamic Properties of the Polymeric Solid State; Pethric, R. Α.; Richards, R. W., Eds. Reidel: Norwell, Massachusetts, 1982.
  67. Benoit, H. Decker, D.; Duplessix, R.; Picot, C.; Rempp, P.; Cotton, J. P.; Farnoux, B.; Jannink, G.; Ober, R. J. Polym. Sci., Polym. Phys. Ed. 1976, 14, 2119.
  68. Debye, P.; Bueche, Α. M. J. Appl. Phys. 1949, 20, 518.
  69. Debye, P.; Anderson, H. R.; Brumberger, H. J. Appl. Phys. 1957, 28, 679.
  70. Goebel, K. D.; Berry, G. C. J. Polym. Sci.-Polym. Phys. Ed. 1977, 15, 555.
  71. Wasiak, Α.; Peiffer, D.; Stein, R. S. J. Polym. Sci.-Polym. Lett. Ed. 1976, 14, 381.
  72. Han, C. C., (U. S. Nat'l. Bureau of Standards), to appear.
  73. Mukherjee, P. and Kyu, T. ACS Polym. Prepr. 1987, 28(1). 361.
  74. Haller, H. R.; Destor, C.; Cannell, D. S. Rev. Sci. Instrum. 1983, 54, 974.
  75. Elsner, G.; Riekel. C.; Zachmann, H. G. Adv. Polym. Sci. 1985, 67, 1.
  76. Perez-Grau, L.; Bordas, J.; Koch. M. H. J. Nucleic Acids Res., 1984, 12, 2987.
  77. Saile, V. (HASYLAB, Hamburg, Germany); personal communication. Estimated cost is $5 million.
  78. Tanaka, T.; Hocker, L. O.; Benedek, G. Β. J. Chem. Phys. 1973, 59, 5151.
  79. Wun. K.L.; Carlson. F. D. Macromolecules 1975, 8, 190.
  80. Nossal, R. Macromolecules 1985, 18, 49.
  81. Hwang. J. S.; Cummins. Η. Ζ. J. Chem. Phys. 1983, 79, 5188.
  82. Geissler. E.; Hecht. A. M.; Duplessix. R. J. Polym. Sci., Polym. Phys. Ed. 1982, 20, 225.
  83. Tanaka, T. In Dynamic Light Scattering; Pecora. R., Ed.; Plenum: New York, 1985.
  84. Schaeffer, D. W.; Han. C. In Dynamic Light Scattering; Pecora. R., Ed.; Plenum: New York, 1985.
  85. Mutin, P. H.; Guenet. J. M. Polymer 1986, 27, 1098.
  86. Burchard, W.; Bantle, S.; Muller, M.; Reiner, A. Pure and Appl. Chem. 1981, 53, 1519.
  87. Burchard, W.; Schmidt, M.; Stockmayer, W. H. Macromolecules 1980, 13, 1265.
  88. Bloomfield, V. Α., this book
  89. Kam, Z.; Hofrichter, J. Biophys. J. 1986, 50, 1015.
  90. Key, P. Y.; Sellen, D. Β. J. Polym. Sci., Polym. Phys. Ed. 1982, 20, 659.
  91. Mackie, W.; Sellen, D. B.; Sutcliffe, J. J. Polym. Sci., Polym. Symp. 1977, 61, 191.
  92. Mackie, W.; Sellen. D. B.; Sutcliffe, J. Polymer 1978, 19, 9.
  93. Ware, B. R.; Cyr, D.; Gorti, S.; Lanni, F. In Measurement of Suspended Particles by Quasielastic Light Scattering; Dahneke. Β. E., Ed.; Wiley: New York, 1983.
  94. San Biagio, P. L.; Newman, J.; Madonia, F.; Palma. M. U. Biomolecular Stereodvnamics 1986, 3, 277. (Proceedings of the fourth Conversation in the Discipline Biomolecular Stereodvnamics; Adenine Press: Schenectady, New York).
  95. Phillies. G. D. J., Macromolecules 1987, 20, 558.
  96. Ogston, A. G.; Preston. Β. N.; Wells. J. D.; Snowden, J. Proc. Roy. Soc. (London) 1973, A333, 297.
  97. Cukier. R. I. Macromolecules 1984, 17, 252.
  98. Altenberger. A. R.; Tirrell, M.; Dahler. J. S. J. Chem. Phys. 1986, 84, 5122.
  99. Langevin. D.; Rondelez. F. Polymer 1978, 14, 875.
  100. Chen. S. P.; Ferry. J. D. Macromolecules 1968, 1, 270.
  101. von Meerwall. E. D.; Amis, E. J.; Ferry, J. D. Macromolecules 1985, 18, 260.
  102. Gesscke. D.; Fleischer, G.; Straube, E. Polymer 1986, 27, 1091.
  103. Nemoto. N.; Landry, M. R.; Noh. I.; Kitano, T.; Wesson, J. Α.; Yu. H. Macromolecules 1985, 18, 308.
  104. Blum, F. D., naNagara, Β., this book.
  105. Rex, G. C., Schlick. S., this book.
  106. Djabourov, M.; LeBlonde, J., this book.
  107. Chung, B.; Zachariades, Α. Ε., this book.
  108. As an example relevant to this symposium: see Heeger, A. J.; Kapitulnik, Α.; Casalnuovo, S. Α.; Spiegel, D. ACS Polym. Prepr. 1986, 27(1), 226.
  109. Miller, W. G.; Chakrabarti, S.; Seibel, Κ. M. In Microdomains in Polymer Solutions; Dubin, P. L., Ed.; Plenum: New York, 1985.
  110. Siesler, H. W. Advances in Polymer Science 1984, 65, 2.
  111. Stein. R. S. Polymer Journal 1985, 17, 289. RECEIVED July 14, 1987