Academia.eduAcademia.edu

Outline

How to detect Wada Basins

2020, arXiv (Cornell University)

https://doi.org/10.48550/ARXIV.2005.05923

Abstract

We present a review of the different techniques available to study a special kind of fractal basins of attraction known as Wada basins, which have the intriguing property of having a single boundary separating three or more basins. We expose several approaches to identify this topological property that rely on different, but not exclusive, definitions of the Wada property.

References (35)

  1. J. Aguirre and M. A. F. Sanjuán, Unpredictable behavior in the Duffing oscillator: Wada basins, Physica D, 171 (2002), 41-51.
  2. J. Aguirre, J. C. Vallejo and M. A. F. Sanjuán, Wada basins and chaotic invariant sets in the Hénon-Heiles system, Phys. Rev. E, 64 (2001), 066208.
  3. P. M. Battelino, C. Grebogi, E. Ott, J. A. Yorke and E. D. Yorke, Multiple coexisting attractors, basin boundaries and basic sets, Physica D, 32 (1988), 296-305.
  4. X. Chen, T. Nishikawaand and A.E. Motter, Slim fractals: The geometry of doubly transient chaos, Phys. Rev. X, 7 (2017), 021040.
  5. J.C.P. Coninck, S.R. Lopes and R.L. Viana, Ricardo, Basins of attraction of nonlinear wave- wave interactions, Chaos, Solitons & Fractals, 32 (2007), 711-724.
  6. A. Daza, J. O. Shipley, S. R. Dolan and M. A. F. Sanjuán, Wada structures in a binary black hole system, Phys. Rev. D, 98 (2018), 084050.
  7. A. Daza, A. Wagemakers, B. Georgeot, D. Guéry-Odelin and M. A. F. Sanjuán, Basin entropy: a new tool to analyze uncertainty in dynamical systems, Sci. Rep., 6 (2016), 31416.
  8. A. Daza, A. Wagemakers and M. A. F. Sanjuán, Ascertaining when a basin is Wada: the merging method, Sci. Rep., 8 (2018), 9954.
  9. A. Daza, A. Wagemakers and M. A. F. Sanjuán, Wada property in systems with delay, Commun. Nonlinear Sci. Numer. Simul., 43 (2017), 220-226.
  10. A. Daza, A. Wagemakers, M. A. F. Sanjuán and J. A. Yorke, Testing for Basins of Wada, Sci. Rep., 5 (2015), 16579.
  11. G. Edgar, Measure, Topology, and Fractal Geometry, Springer, New York, 2007.
  12. B. Epureanu and H. Greenside, Fractal Basins of Attraction Associated with a Damped Newton's Method, SIAM Rev., 40 (1998), 102-109.
  13. J. H. Friedman, J. L. Bentley and R. A. Finkel, An algorithm for finding best matches in logarithmic expected time, ACM Trans. Math. Softw., 3 (1977), 209-226.
  14. M. Hansen, D.R. da Costa, I.L. Caldas and E.D. Leonel, Statistical properties for an open oval billiard: An investigation of the escaping basins, Chaos, Solitons & Fractals, 106 (2018), 355-362.
  15. J. G. Hocking and G. S. Young, Topology, Dover, New York, 1988.
  16. J. Kennedy and J. A. Yorke, Basins of Wada, Physica D, 51 (1991), 213-225.
  17. C. Kuratowski, Sur les coupures irréductibles du plan, Fundamenta Mathematicae, 6 (1924), 130-145.
  18. G. Lu, M. Landauskas and M. Ragulskis, Control of divergence in an extended invertible logistic map, Int. J. Bifurcation Chaos, 28 (2018), 1850129.
  19. A.C. Mathias, R.L. Viana, T. Kroetz and I.L. Caldas, Fractal structures in the chaotic motion of charged particles in a magnetized plasma under the influence of drift waves, Physica A, 469 (2017), 681-694.
  20. H. E. Nusse, E. Ott and J. A. Yorke, Saddle-Node Bifurcations on Fractal Basin Boundaries, Phys. Rev. Lett., 75 (1995), 2482-2485.
  21. H. E. Nusse and J. A. Yorke, Wada basin boundaries and basin cells, Physica D, 90 (1996), 242-261.
  22. H. E. Nusse and J. A. Yorke, Dynamics: numerical explorations, Springer, New York, 2012.
  23. H. E. Nusse and J. A. Yorke, Fractal basin boundaries generated by basin cells and the geometry of mixing chaotic flows, Phys. Rev. Lett., 84 (2000), 626-629.
  24. L. Poon, J. Campos, E. Ott and C. Grebogi, Wada basin boundaries in chaotic scattering, Int. J. Bifurcation Chaos, 6 (1996), 251-265.
  25. M. A. F. Sanjuán, J. Kennedy, E. Ott and J. A. Yorke, Indecomposable continua and the characterization of strange sets in nonlinear dynamics, Phys. Rev. Lett., 78 (1997), 1892.
  26. L. G. Shapiro and G. C. Stockman, Computer vision, Prentice Hall, Upper Saddle River, NJ, 2001.
  27. T. Tél and M. Gruiz Chaotic dynamics: An introduction based on classical mechanics Cam- bridge University Press, UK, 2006.
  28. Z. Toroczkai, G. Károlyi, A. Péntek, T. Tél, C. Grebogi and J. A. Yorke, Wada dye boundaries in open hydrodynamical flows, Physica A, 239 (1997), 235-243.
  29. J. Vandermeer, Wada basins and qualitative unpredictability in ecological models: a graphical interpretation, Ecol. Model., 176 (2004), 65-74.
  30. A. Wagemakers, A. Daza and M. A. F. Sanjuán, The saddle-straddle method to test for Wada basins, Commun. Nonlinear Sci. Numer. Simul., 84 (2020), 105167.
  31. K. Yoneyama, Theory of continuous sets of points, Tokohu Math. J., 11 (1917), 43-158.
  32. Y. Zhang and G. Luo, Unpredictability of the Wada property in the parameter plane, Physics Letters A, 376 (2012), 3060-3066.
  33. Y. Zhang and G. Luo, Wada bifurcations and partially Wada basin boundaries in a two- dimensional cubic map, Phys. Lett. A, 377 (2013), 1274-1281.
  34. Y. Zhang, G. Luo, Q. Cao and M. Lin, Wada basin dynamics of a shallow arch oscillator with more than 20 coexisting low-period periodic attractors, International Journal of Non-Linear Mechanics, 58 (2014), 151-161.
  35. P. Ziaukas and M. Ragulskis, Fractal dimension and Wada measure revisited: no straightfor- ward relationships in ndds, Nonlinear Dynamics, 88 (2017), 871-882.