Abstract
We present a review of the different techniques available to study a special kind of fractal basins of attraction known as Wada basins, which have the intriguing property of having a single boundary separating three or more basins. We expose several approaches to identify this topological property that rely on different, but not exclusive, definitions of the Wada property.
References (35)
- J. Aguirre and M. A. F. Sanjuán, Unpredictable behavior in the Duffing oscillator: Wada basins, Physica D, 171 (2002), 41-51.
- J. Aguirre, J. C. Vallejo and M. A. F. Sanjuán, Wada basins and chaotic invariant sets in the Hénon-Heiles system, Phys. Rev. E, 64 (2001), 066208.
- P. M. Battelino, C. Grebogi, E. Ott, J. A. Yorke and E. D. Yorke, Multiple coexisting attractors, basin boundaries and basic sets, Physica D, 32 (1988), 296-305.
- X. Chen, T. Nishikawaand and A.E. Motter, Slim fractals: The geometry of doubly transient chaos, Phys. Rev. X, 7 (2017), 021040.
- J.C.P. Coninck, S.R. Lopes and R.L. Viana, Ricardo, Basins of attraction of nonlinear wave- wave interactions, Chaos, Solitons & Fractals, 32 (2007), 711-724.
- A. Daza, J. O. Shipley, S. R. Dolan and M. A. F. Sanjuán, Wada structures in a binary black hole system, Phys. Rev. D, 98 (2018), 084050.
- A. Daza, A. Wagemakers, B. Georgeot, D. Guéry-Odelin and M. A. F. Sanjuán, Basin entropy: a new tool to analyze uncertainty in dynamical systems, Sci. Rep., 6 (2016), 31416.
- A. Daza, A. Wagemakers and M. A. F. Sanjuán, Ascertaining when a basin is Wada: the merging method, Sci. Rep., 8 (2018), 9954.
- A. Daza, A. Wagemakers and M. A. F. Sanjuán, Wada property in systems with delay, Commun. Nonlinear Sci. Numer. Simul., 43 (2017), 220-226.
- A. Daza, A. Wagemakers, M. A. F. Sanjuán and J. A. Yorke, Testing for Basins of Wada, Sci. Rep., 5 (2015), 16579.
- G. Edgar, Measure, Topology, and Fractal Geometry, Springer, New York, 2007.
- B. Epureanu and H. Greenside, Fractal Basins of Attraction Associated with a Damped Newton's Method, SIAM Rev., 40 (1998), 102-109.
- J. H. Friedman, J. L. Bentley and R. A. Finkel, An algorithm for finding best matches in logarithmic expected time, ACM Trans. Math. Softw., 3 (1977), 209-226.
- M. Hansen, D.R. da Costa, I.L. Caldas and E.D. Leonel, Statistical properties for an open oval billiard: An investigation of the escaping basins, Chaos, Solitons & Fractals, 106 (2018), 355-362.
- J. G. Hocking and G. S. Young, Topology, Dover, New York, 1988.
- J. Kennedy and J. A. Yorke, Basins of Wada, Physica D, 51 (1991), 213-225.
- C. Kuratowski, Sur les coupures irréductibles du plan, Fundamenta Mathematicae, 6 (1924), 130-145.
- G. Lu, M. Landauskas and M. Ragulskis, Control of divergence in an extended invertible logistic map, Int. J. Bifurcation Chaos, 28 (2018), 1850129.
- A.C. Mathias, R.L. Viana, T. Kroetz and I.L. Caldas, Fractal structures in the chaotic motion of charged particles in a magnetized plasma under the influence of drift waves, Physica A, 469 (2017), 681-694.
- H. E. Nusse, E. Ott and J. A. Yorke, Saddle-Node Bifurcations on Fractal Basin Boundaries, Phys. Rev. Lett., 75 (1995), 2482-2485.
- H. E. Nusse and J. A. Yorke, Wada basin boundaries and basin cells, Physica D, 90 (1996), 242-261.
- H. E. Nusse and J. A. Yorke, Dynamics: numerical explorations, Springer, New York, 2012.
- H. E. Nusse and J. A. Yorke, Fractal basin boundaries generated by basin cells and the geometry of mixing chaotic flows, Phys. Rev. Lett., 84 (2000), 626-629.
- L. Poon, J. Campos, E. Ott and C. Grebogi, Wada basin boundaries in chaotic scattering, Int. J. Bifurcation Chaos, 6 (1996), 251-265.
- M. A. F. Sanjuán, J. Kennedy, E. Ott and J. A. Yorke, Indecomposable continua and the characterization of strange sets in nonlinear dynamics, Phys. Rev. Lett., 78 (1997), 1892.
- L. G. Shapiro and G. C. Stockman, Computer vision, Prentice Hall, Upper Saddle River, NJ, 2001.
- T. Tél and M. Gruiz Chaotic dynamics: An introduction based on classical mechanics Cam- bridge University Press, UK, 2006.
- Z. Toroczkai, G. Károlyi, A. Péntek, T. Tél, C. Grebogi and J. A. Yorke, Wada dye boundaries in open hydrodynamical flows, Physica A, 239 (1997), 235-243.
- J. Vandermeer, Wada basins and qualitative unpredictability in ecological models: a graphical interpretation, Ecol. Model., 176 (2004), 65-74.
- A. Wagemakers, A. Daza and M. A. F. Sanjuán, The saddle-straddle method to test for Wada basins, Commun. Nonlinear Sci. Numer. Simul., 84 (2020), 105167.
- K. Yoneyama, Theory of continuous sets of points, Tokohu Math. J., 11 (1917), 43-158.
- Y. Zhang and G. Luo, Unpredictability of the Wada property in the parameter plane, Physics Letters A, 376 (2012), 3060-3066.
- Y. Zhang and G. Luo, Wada bifurcations and partially Wada basin boundaries in a two- dimensional cubic map, Phys. Lett. A, 377 (2013), 1274-1281.
- Y. Zhang, G. Luo, Q. Cao and M. Lin, Wada basin dynamics of a shallow arch oscillator with more than 20 coexisting low-period periodic attractors, International Journal of Non-Linear Mechanics, 58 (2014), 151-161.
- P. Ziaukas and M. Ragulskis, Fractal dimension and Wada measure revisited: no straightfor- ward relationships in ndds, Nonlinear Dynamics, 88 (2017), 871-882.