Abstract
Nonlinear systems often give rise to fractal boundaries in phase space, hindering predictability. When a single boundary separates three or more different basins of attraction, we say that the set of basins has theWada property and initial conditions near that boundary are even more unpredictable. Many physical systems of interest with this topological property appear in the literature. However, so far the only approach to study Wada basins has been restricted to two-dimensional phase spaces. Here we report a simple algorithm whose purpose is to look for the Wada property in a given dynamical system. Another benefit of this procedure is the possibility to classify and study intermediate situations known as partially Wada boundaries.
References (23)
- Nusse, H. E., Ott, E. & Yorke, J. A. Saddle-node bifurcations on fractal basin boundaries. Phys. Rev. Lett. 75(13), 2482-2485 (1995).
- Portela, J. S. E., Caldas, I. L., Viana, R. L. & Sanjuán, M. A. F. Fractal and Wada exit basin boundaries in tokamaks. Int. J. Bifurc. Chaos 17(11), 4067-4079 (2007).
- Toroczkai, Z., Károlyi, G., Péntek, Á., Tél, T., Grebogi, C. & Yorke, J. A. Wada dye boundaries in open hydrodynamical flows. Physica A 239(1), 235-243 (1997).
- Aguirre, J. & Sanjuán, M. A. F. Unpredictable behavior in the Duffing oscillator: Wada basins. Phys. D 171(1), 41-51 (2002).
- Aguirre, J., Vallejo, J. C. & Sanjuán, M. A. F. Wada basins and chaotic invariant sets in the Hénon-Heiles system. Phys. Rev. E 64(6), 66208 (2001).
- Epureanu, B. I. & Greenside, H. S. Fractal basins of attraction associated with a damped Newton's method. SIAM Rev. 40, 102-109 (1998).
- Brouwer, L. E. J. Zur analysis situs. Math. Ann. 68(3), 422-434 (1910).
- Yoneyama, K. Theory of continuous sets of points. Tokohu Math. J. 11(12), 43-158 (1917).
- Hocking, J. G. & Young, G. S. Topology. Addison Wesley (Reading, Massachusetts) (1961).
- Kennedy, J. & Yorke, J. A. Basins of Wada. Phys. D 51(1), 213-225 (1991).
- Nusse, H. E. & Yorke, J. A. Fractal basin boundaries generated by basin cells and the geometry of mixing chaotic flows. Phys. Rev. Lett. 84(4), 626-629 (2000).
- Nusse, H. E. & Yorke, J. A. Wada basin boundaries and basin cells. Phys. D 90(3), 242-261.
- Zhang, Y. & Luo, G. Unpredictability of the Wada property in the parameter plane. Phys. Lett. A 376(45), 3060-3066 (2012).
- Vandermeer, J. Wada basins and qualitative unpredictability in ecological models: a graphical interpretation. Ecol. Modell. 176(1), 65-74 (2004).
- Gattobigio, G. L., Couvert, A., Georgeot, B. & Guéry-Odelin, D. Exploring classically chaotic potentials with a matter wave quantum probe. Phys. Rev. Lett. 107(25), 254104 (2011).
- Gattobigio, G. L., Couvert, A., Reinaudi, G., Georgeot, B. & Guéry-Odelin, D. Optically guided beam splitter for propagating matter waves. Phys. Rev. Lett. 109(3), 30403 (2012).
- Sweet, D., Ott, E. & Yorke, J. A. Topology in chaotic scattering. Nature 399(6734), 315-316 (1999).
- Kovács, Z. & Wiesenfeld, L. Topological aspects of chaotic scattering in higher dimensions. Phys. Rev. E 63(5), 56207 (2001).
- Aguirre, J., Viana, R. L. & Sanjuán, M. A. F. Fractal structures in nonlinear dynamics. Rev. Mod. Phys. 81(1), 333-386 (2009).
- Zhang, Y. & Luo, G. Wada bifurcations and partially Wada basin boundaries in a two-dimensional cubic map. Phys. Lett. A 377(18), 1274-1281 (2013).
- In the magnetic pendulum the fractality is lost at infinity 22 . Thus, this system does not have the Wada property from a mathematical point of view, but physically it does. Our algorithm classifies it as completely Wada system too.
- Motter, A. E., Gruiz, M., Károlyi, G. & Tél, T. Doubly transient chaos: Generic form of chaos in autonomous dissipative systems. Phys. Rev. Lett. 111(19), 194101 (2013).
- If only three colors are detected it is worth mentioning a straightforward simplification. Once the algorithm has chosen two points in a ball to look for the third color between them, one can use an oriented version of the method. Using this modification, the computational effort grows linearly with the number of steps q instead of exponentially.