Academia.eduAcademia.edu

Outline

Semantic science and machine-accessible scientific theories

2008

Abstract

There has been much recent progress in building ontologies and publishing scientific data based on these ontologies. This paper overviews issues and progress in the other half of semantic science: having machine accessible scientific theories that can make predictions on this data and can be used for new cases. This paper presents the grand vision, issues that have arisen in building such systems for the geological domain (minerals exploration and geo-hazards), and sketches the formal foundations that underlie this vision.

References (29)

  1. Alexander, C., Ishikawa, S., Silverstein, M., Jacobson, M., Fiksdahl-King, I., and Angel, S. (1977). A Pattern Lan- guage. Oxford University Press, New York.
  2. Aristotle (350 B.C.). Categories. Translated by E. M. Edghill, Berg, J. (1982). Aristotle's theory of definition. In ATTI del Convegno Internazionale di Storia della Logica, pp. 19-30. San Gimignano.
  3. Costa, P., Laskey, K.B., and Laskey, K.J. (2005). PR-OWL: A Bayesian ontology language for the semantic web. In Proceedings of the ISWC Workshop on Uncertainty Rea- soning for the Semantic Web. Galway, Ireland.
  4. Darwiche, A. and Goldszmidt, M. (1994). On the relation between kappa calculus and probabilistic reasoning. In UAI-94, pp. 145-153.
  5. De Roure, D., Jennings, N.R., and Shadbolt, N.R. (2005). The semantic grid: Past, present and future. Procedings of the IEEE, 93(3): 669-681.
  6. Gillespie, M.R. and Styles, M.T. (1999). Bgs rock classifi- cation scheme, volume 1: Classification of igneous rocks. Research Report (2nd edition) RR 99-06, British Geolog- ical Survey.
  7. Henrion, M., Breese, J., and Horvitz, E. (1991). Decision analysis and expert systems. AI Magazine, 12(4): 61-94.
  8. Kersting, K. and De Raedt, L. (2007). Bayesian logic pro- gramming: Theory and tool. In L. Getoor and B. Taskar (Eds.), An Introduction to Statistical Relational Learning. MIT Press.
  9. Laskey, K.B., Wright, E.J., and da Costa, P.C.G. (2007). En- visioning uncertainty in geospatial information. In UAI Applications Workshop 2007 (The 5th Bayesian Modeling Applications Workshop.
  10. McGuinness, D., Fox, P., Cinquini, L., West, P., Garcia, J., Benedict, J.L., and Middleton, D. (2007). The virtual solar-terrestrial observatory: A deployed semantic web application case study for scientific research. In Proceed- ings of the Nineteenth Conference on Innovative Applica- tions of Artificial Intelligence (IAAI-07). Vancouver, BC, Canada.
  11. McGuinness, D.L. and van Harmelen, F. (2004). Owl web ontology language overview. W3C Recommendation 10 February 2004, W3C.
  12. Page, L., Brin, S., Motwani, R., and Winograd, T. (1999). The pagerank citation ranking: Bringing order to the web. Technical Report SIDL-WP-1999-0120, Stanford Info- Lab. http://dbpubs.stanford.edu/pub/1999-66.
  13. Pearl, J. (1989). Probabilistic semantics for nonmonotonic reasoning: A survey. In R.J. Brachman, H.J. Levesque, and R. Reiter (Eds.), KR-89, pp. 505-516. Toronto.
  14. Pinker, S. (1994). The Language Instinct. Harper Collins, New York.
  15. Polya, G. (1954). Mathematics and Plausible Reasoning, volume II Patterns of Plausible Inference. Princeton Uni- versity Press.
  16. Pool, M., Fung, F., Cannon, S., and Aikin, J. (2005). Is it worth a hoot? Qualms about OWL for uncertainty rea- soning. In Proceedings of the ISWC Workshop on Uncer- tainty Reasoning for the Semantic Web.
  17. Poole, D. (1993). Probabilistic Horn abduction and Bayesian networks. Artificial Intelligence, 64(1): 81-129.
  18. Poole, D. (2007). Logical generative models for probabilis- tic reasoning about existence, roles and identity. In 22nd AAAI Conference on AI (AAAI-07).
  19. Poole, D. and Smyth, C. (2005). Type uncertainty in ontologically-grounded qualitative probabilistic match- ing. In Proc. European Conference on Symbolic and Qualitative Reasoning About Uncertainty (ECSQARU), LNAI 3571, pp. 763-774. Springer-Verlag, Barcelona, Spain.
  20. Popper, K. (1959). The Logic of Scientific Discovery. Basic Books, New York, NY.
  21. Sapir, E. (1929). The status of linguistics as a science. Lan- guage, 5(209).
  22. Smith, B. (2003a). The logic of biological classification and the foundations of biomedical ontology. In D. Westerståhl (Ed.), Invited Papers from the 10th International Confer- ence in Logic Methodology and Philosophy of Science. Elsevier-North-Holland, Oviedo, Spain.
  23. Smith, B. (2003b). Ontology. In L. Floridi (Ed.), Blackwell Guide to the Philosophy of Computing and Information, pp. 155-166. Oxford: Blackwell.
  24. Smyth, C. and Poole, D. (2004). Qualitative probabilis- tic matching with hierarchical descriptions. In KR-04. Whistler, BC, Canada.
  25. Smyth, C., Poole, D., and Sharma, R. (2007). Semantic e-science and geology. In AAAI-07 Semantic e-Science workshop.
  26. Sowa, J.F. (2000). Knowledge Representation: Logical, Philosophical, and Computational Foundations. Brooks Cole Publishing Co., Pacific Grove, CA.
  27. Struik, L., Quat, M., Davenport, P., and Okulitch, A. (2002). A preliminary scheme for multihierarchical rock classifi- cation for use with thematic computer-based query sys- tems. Current Research 2002-D10, Geological Survey of Canada.
  28. Tang, H. and Ng, J.H.K. (2006). Googling for a diagnosis- use of google as a diagnostic aid: internet based study. BMJ, doi:10.1136/bmj.39003.640567.AE.
  29. Whorf, B.L. (1940). Science and linguistics. Technology Review, 42(6): 229-31, 247-8.