Academia.eduAcademia.edu

Outline

Rice-Like Theorems for Automata Networks

2021

https://doi.org/10.4230/LIPICS.STACS.2021.32

Abstract

We prove general complexity lower bounds on automata networks, in the style of Rice’s theorem, but in the computable world. Our main result is that testing any fixed first-order property on the dynamics of an automata network is either trivial, or NP-hard, or coNP-hard. Moreover, there exist such properties that are arbitrarily high in the polynomial-time hierarchy. We also prove that testing a first-order property given as input on an automata network (also part of the input) is PSPACE-hard. Besides, we show that, under a natural effectiveness condition, any nontrivial property of the limit set of a nondeterministic network is PSPACE-hard. We also show that it is PSPACE-hard to separate deterministic networks with a very high and a very low number of limit configurations; however, the problem of deciding whether the number of limit configurations is maximal up to a polynomial quantity belongs to the polynomial-time hierarchy. 2012 ACM Subject Classification Theory of computation → ...

References (24)

  1. J. Aracena. Maximum number of fixed points in regulatory Boolean networks. Bull. Math. Biol., 70:1398-1409, 2008.
  2. B. Borchert and F. Stephan. Looking for an analogue of Rice's theorem in circuit complexity theory. Mathematical Logic Quarterly, 46(4):489-504, 2000. doi:10.1002/1521-3870(200010) 46:4<489::AID-MALQ489>3.0.CO;2-F.
  3. P. Cull. Linear analysis of switching nets. Biol. Cybernet., 8:31-39, 1971.
  4. J. Demongeot, M. Noual, and S. Sené. Combinatorics of Boolean automata circuits dynamics. Discr. Appl. Math., 160:398-415, 2012.
  5. H.-D. Ebbinghaus and J. Flüm. Finite Model Theory. Springer-Verlag, 2nd edition, 1995. doi:10.1007/3-540-28788-4. 32:17
  6. B. Elspas. The theory of autonomous linear sequential networks. IRE Trans. Circ. Theory, 6:45-60, 1959.
  7. C. Espinosa-Soto, P. Padilla-Longoria, and E. R. Alvarez-Buylla. A gene regulatory network model for cell-fate determination during Arabidopsis thaliana flower development that is robust and recovers experimental gene expression profiles. The Plant Cell, 16:2923-2939, 2004.
  8. E. Goles and S. Martinez. Neural and Automata Networks: Dynamical Behavior and Applica- tions. Kluwer Academic Publishers, 1990.
  9. S. W. Golomb. Shift Register Sequences. Holden-Day Inc., 1967.
  10. W. Hanf. Model-theoretic methods in the study of elementary logic. In J.W. Addison, L. Henkin, and A. Tarski, editors, The Theory of Models, pages 132-145. North-Holland, 1963. doi:10.1016/B978-0-7204-2233-7.50020-4.
  11. N. Immerman. Descriptive Complexity. Springer-Verlag, 1999. doi:10.1007/ 978-1-4612-0539-5.
  12. J. Kari. Rice's theorem for the limit sets of cellular automata. Theoretical Computer Science, 127:229-254, 1994.
  13. G. Karlebach and R. Shamir. Modelling and analysis of gene regulatory networks. Nature Rev. Mol. Cell Biol., 9:770-780, 2008.
  14. S. A. Kauffman. Metabolic stability and epigenesis in randomly constructed genetic nets. Journal of Theoretical Biology, 22:437-467, 1969. doi:10.1016/0022-5193(69)90015-0.
  15. S. C. Kleene. Automata Studies, chapter Representation of events in nerve nets and finite automata, pages 3-41. Princeton University Press, 1956.
  16. W. S. McCulloch and W. H. Pitts. A logical calculus of the ideas immanent in nervous activity. Bull. Math. Biophys., 5:115-133, 1943.
  17. L. Mendoza and E. R. Alvarez-Buylla. Dynamics of the genetic regulatory network for Arabidopsis thaliana flower morphogenesis. J. Theoret. Biol., 193:307-319, 1998.
  18. H. G. Rice. Classes of recursively enumerable sets and their decision problems. Transactions of the American Mathematical Society, 74:358-366, 1953. doi:10.1090/ S0002-9947-1953-0053041-6.
  19. A. Richard. Local negative circuits and fixed points in non-expansive Boolean networks. Discr. Appl. Math., 159:1085-1093, 2011.
  20. F. Robert. Discrete Iterations: A Metric Study. Springer Verlag, 1986.
  21. J. H. Silverman. A friendly introduction to number theory. Pearson Education, 4th edition, 2012.
  22. L. J. Stockmeyer and A. R. Meyer. Word problems requiring exponential time(preliminary report). In Proceedings of the Fifth Annual ACM Symposium on Theory of Computing, STOC '73, pages 1-9, New York, NY, USA, 1973. ACM. doi:10.1145/800125.804029.
  23. D. Thieffry and R. Thomas. Dynamical behaviour of biological regulatory networks -II. Immunity control in bacteriophage lambda. Bull. Math. Biol., 57:277-297, 1995.
  24. R. Thomas. Boolean formalization of genetic control circuits. Journal of Theoretical Biology, 42:563-585, 1973. doi:10.1016/0022-5193(73)90247-6.