Abstract
We prove general complexity lower bounds on automata networks, in the style of Rice’s theorem, but in the computable world. Our main result is that testing any fixed first-order property on the dynamics of an automata network is either trivial, or NP-hard, or coNP-hard. Moreover, there exist such properties that are arbitrarily high in the polynomial-time hierarchy. We also prove that testing a first-order property given as input on an automata network (also part of the input) is PSPACE-hard. Besides, we show that, under a natural effectiveness condition, any nontrivial property of the limit set of a nondeterministic network is PSPACE-hard. We also show that it is PSPACE-hard to separate deterministic networks with a very high and a very low number of limit configurations; however, the problem of deciding whether the number of limit configurations is maximal up to a polynomial quantity belongs to the polynomial-time hierarchy. 2012 ACM Subject Classification Theory of computation → ...
References (24)
- J. Aracena. Maximum number of fixed points in regulatory Boolean networks. Bull. Math. Biol., 70:1398-1409, 2008.
- B. Borchert and F. Stephan. Looking for an analogue of Rice's theorem in circuit complexity theory. Mathematical Logic Quarterly, 46(4):489-504, 2000. doi:10.1002/1521-3870(200010) 46:4<489::AID-MALQ489>3.0.CO;2-F.
- P. Cull. Linear analysis of switching nets. Biol. Cybernet., 8:31-39, 1971.
- J. Demongeot, M. Noual, and S. Sené. Combinatorics of Boolean automata circuits dynamics. Discr. Appl. Math., 160:398-415, 2012.
- H.-D. Ebbinghaus and J. Flüm. Finite Model Theory. Springer-Verlag, 2nd edition, 1995. doi:10.1007/3-540-28788-4. 32:17
- B. Elspas. The theory of autonomous linear sequential networks. IRE Trans. Circ. Theory, 6:45-60, 1959.
- C. Espinosa-Soto, P. Padilla-Longoria, and E. R. Alvarez-Buylla. A gene regulatory network model for cell-fate determination during Arabidopsis thaliana flower development that is robust and recovers experimental gene expression profiles. The Plant Cell, 16:2923-2939, 2004.
- E. Goles and S. Martinez. Neural and Automata Networks: Dynamical Behavior and Applica- tions. Kluwer Academic Publishers, 1990.
- S. W. Golomb. Shift Register Sequences. Holden-Day Inc., 1967.
- W. Hanf. Model-theoretic methods in the study of elementary logic. In J.W. Addison, L. Henkin, and A. Tarski, editors, The Theory of Models, pages 132-145. North-Holland, 1963. doi:10.1016/B978-0-7204-2233-7.50020-4.
- N. Immerman. Descriptive Complexity. Springer-Verlag, 1999. doi:10.1007/ 978-1-4612-0539-5.
- J. Kari. Rice's theorem for the limit sets of cellular automata. Theoretical Computer Science, 127:229-254, 1994.
- G. Karlebach and R. Shamir. Modelling and analysis of gene regulatory networks. Nature Rev. Mol. Cell Biol., 9:770-780, 2008.
- S. A. Kauffman. Metabolic stability and epigenesis in randomly constructed genetic nets. Journal of Theoretical Biology, 22:437-467, 1969. doi:10.1016/0022-5193(69)90015-0.
- S. C. Kleene. Automata Studies, chapter Representation of events in nerve nets and finite automata, pages 3-41. Princeton University Press, 1956.
- W. S. McCulloch and W. H. Pitts. A logical calculus of the ideas immanent in nervous activity. Bull. Math. Biophys., 5:115-133, 1943.
- L. Mendoza and E. R. Alvarez-Buylla. Dynamics of the genetic regulatory network for Arabidopsis thaliana flower morphogenesis. J. Theoret. Biol., 193:307-319, 1998.
- H. G. Rice. Classes of recursively enumerable sets and their decision problems. Transactions of the American Mathematical Society, 74:358-366, 1953. doi:10.1090/ S0002-9947-1953-0053041-6.
- A. Richard. Local negative circuits and fixed points in non-expansive Boolean networks. Discr. Appl. Math., 159:1085-1093, 2011.
- F. Robert. Discrete Iterations: A Metric Study. Springer Verlag, 1986.
- J. H. Silverman. A friendly introduction to number theory. Pearson Education, 4th edition, 2012.
- L. J. Stockmeyer and A. R. Meyer. Word problems requiring exponential time(preliminary report). In Proceedings of the Fifth Annual ACM Symposium on Theory of Computing, STOC '73, pages 1-9, New York, NY, USA, 1973. ACM. doi:10.1145/800125.804029.
- D. Thieffry and R. Thomas. Dynamical behaviour of biological regulatory networks -II. Immunity control in bacteriophage lambda. Bull. Math. Biol., 57:277-297, 1995.
- R. Thomas. Boolean formalization of genetic control circuits. Journal of Theoretical Biology, 42:563-585, 1973. doi:10.1016/0022-5193(73)90247-6.