Academia.eduAcademia.edu

Outline

Characterizations of voting rules based on majority margins

2025

Abstract

In the context of voting with ranked ballots, an important class of voting rules is the class of margin-based rules (also called pairwise rules). A voting rule is margin-based if whenever two elections generate the same head-to-head margins of victory or loss between candidates, then the voting rule yields the same outcome in both elections. Although this is a mathematically natural invariance property to consider, whether it should be regarded as a normative axiom on voting rules is less clear. In this paper, we address this question for voting rules with any kind of output, whether a set of candidates, a ranking, a probability distribution, etc. We prove that a voting rule is margin-based if and only if it satisfies some axioms with clearer normative content. A key axiom is what we call Preferential Equality, stating that if two voters both rank a candidate x immediately above a candidate y, then either voter switching to rank y immediately above x will have the same effect on the election outcome as if the other voter made the switch, so each voter's preference for y over x is treated equally.

References (28)

  1. Felix Brandt. Some remarks on Dodgson's voting rule. Mathematical Logic Quarterly, 55(4):460-463, 2009. doi: 10.1002/malq.200810017.
  2. Felix Brandt, Christian Saile, and Christian Stricker. Voting with ties: Strong impossibilities via SAT solving. In M. Dastani, G. Sukthankar, E. André, and S. Koenig, editors, Proceedings of the 17th International Conference on Autonomous Agents and Multiagent Systems (AAMAS 2018). International Foundation for Autonomous Agents and Multiagent Systems (IFAAMAS), 2018.
  3. Bernard Debord. Caractérisation des matrices des préférences nettes et méthodes d'agrégation associées. Mathématiques et sciences humaines, 97:5-17, 1987.
  4. Yifeng Ding, Wesley H. Holliday, and Eric Pacuit. An axiomatic characterization of Split Cycle. Social Choice and Welfare, Forthcoming. doi: 10.1007/s00355-024-01539-w.
  5. Philippe De Donder, Michel Le Breton, and Michel Truchon. Choosing from a weighted tournament. Mathematical Social Sciences, 40:85-109, 2000. doi: 10.1016/S0165-4896(99)00042-6.
  6. Bhaskar Dutta and Jean-Francois Laslier. Comparison functions and choice correspondences. Social Choice and Welfare, 16:513-532, 1999. doi: 10.1007/s003550050158.
  7. Peter C. Fishburn. Condorcet social choice functions. SIAM Journal on Applied Mathematics, 33 (3):469-489, 1977. doi: 10.1137/0133030.
  8. José Luis García-Lapresta, A.A.J. Marley, and Miguel Martínez-Panero. Characterizing best-worst voting systems in the scoring context. Social Choice and Welfare, 34:487-496, 2010. doi: 10.1007/ S00355-009-0417-1.
  9. Jac C. Heckelman and Robi Ragan. Symmetric scoring rules and a new characterization of the Borda count. Economic Inquiry, 59(1):287-299, 2021. doi: 10.1111/ecin.12929.
  10. Wesley H. Holliday. An impossibility theorem concerning positive involvement in voting. Economics Letters, 236:111589, 2024. doi: 10.1016/j.econlet.2024.111589.
  11. Wesley H. Holliday and Eric Pacuit. Axioms for defeat in democratic elections. Journal of Theoretical Politics, 33(4):475-524, 2021. doi: 10.1177/09516298211043236.
  12. Wesley H. Holliday and Eric Pacuit. Split Cycle: A new Condorcet consistent voting method independent of clones and immune to spoilers. Public Choice, 197:1-62, 2023a. doi: 10.1007/ s11127-023-01042-3.
  13. Wesley H. Holliday and Eric Pacuit. Stable Voting. Constitutional Political Economy, 34:421-433, 2023b. doi: 10.1007/s10602-022-09383-9.
  14. Wesley H. Holliday and Eric Pacuit. Stable Voting Dataset, Release: 12-17-2024, 2024. URL https://github.com/voting-tools/stablevoting-datasets.
  15. Wesley H. Holliday and Eric Pacuit. An extension of May's Theorem to three candidates: axioma- tizing Minimax voting. Social Choice and Welfare, Forthcoming. arXiv:2312.14256 [econ.TH].
  16. Gerald H. Kramer. A dynamical model of political equilibrium. Journal of Economic Theory, 16 (2):310-334, 1977. doi: 10.1016/0022-0531(77)90011-4.
  17. Nicholas Mattei and Toby Walsh. PREFLIB: A library for preferences. In Patrice Perny, Marc Pirlot, and Alexis Tsoukiàs, editors, Algorithmic Decision Theory, ADT 2013, volume 8176 of Lecture Notes in Computer Science, pages 259-270. Springer, Berlin, Heidelberg, 2013. doi: 10. 1007/978-3-642-41575-3 20. URL http://www.preflib.org.
  18. David C. McGarvey. A theorem on the construction of voting paradoxes. Econometrica, 21(4): 608-610, 1953. doi: 10.2307/1907926.
  19. Andrew C. Myers. CIVS (Condorcet Internet Voting Service) Data Release 2024-12-15, 2024a. URL https://civs1.civs.us/data-releases.html.
  20. Andrew C. Myers. The frequency of Condorcet winners in real non-political elections, March 2024b. URL http://www.cs.cornell.edu/andru/papers/civs24.
  21. Deb Otis. Single winner ranked choice voting CVRs, 2022. URL https://doi.org/10.7910/DVN/AMK8PJ.
  22. Raúl Pérez-Fernández and Bernard De Baets. The supercovering relation, the pairwise winner, and more missing links between Borda and Condorcet. Social Choice and Welfare, 50:329-352, 2018. doi: 10.1007/s00355-017-1086-0.
  23. Donald G. Saari. Capturing the "will of the people". Ethics, 113(2):333-349, 2003. doi: 10.1086/ 342857.
  24. Markus Schulze. A new monotonic, clone-independent, reversal symmetric, and condorcet- consistent single-winner election method. Social Choice and Welfare, 36:267-303, 2011. doi: 10.1007/s00355-010-0475-4.
  25. Paul B. Simpson. On defining areas of voter choice: Professor Tullock on stable voting. The Quarterly Journal of Economics, 83(3):478-490, 1969. doi: 10.2307/1880533.
  26. John H. Smith. Aggregation of preferences with variable electorate. Econometrica, 41(6):1027-1041, 1973. doi: 10.2307/1914033.
  27. T. Nicolaus Tideman. Independence of clones as a criterion for voting rules. Social Choice and Welfare, 4:185-206, 1987. doi: 10.1007/bf00433944.
  28. William S. Zwicker. Introduction to the theory of voting. In Felix Brandt, Vincent Conitzer, Ulle Endriss, Jérôme Lang, and Ariel D. Procaccia, editors, Handbook of Computational Social Choice, pages 23-56. Cambridge University Press, New York, 2016. doi: 10.1017/cbo9781107446984.003.