Mathematical Creativity: A Peircean Abductive Proposal
2025, BRAIN
https://doi.org/10.70594/BRAIN/16.1/26Abstract
This paper explores mathematical creativity through the lens of Charles Sanders Peirce's concept of abductive reasoning. Peirce, who defined mathematics as the study of pure hypotheses and their consequences, saw abduction as the process of forming explanatory hypotheses, the only logical operation that introduces new ideas. We argue that mathematical creativity, with its focus on generating novel and meaningful ideas, patterns, and solutions, is intrinsically linked to abduction and takes place through diagrammatic reasoning. Mathematicians, faced with surprising facts or observations, engage in abductive reasoning to propose new theorems or conjectures that explain these phenomena. This creative leap, going beyond deductive and inductive reasoning, lies at the heart of mathematical discovery. We illustrate this process with examples from contemporary mathematics, including Wiles' proof of Fermat's Last Theorem and Perelman's resolution of the Poincaré Conjecture. Furthermore, we connect Peirce's notion of diagrammatic reasoning to mathematical creativity, highlighting the role of experimentation and observation in this process. Finally, we link our approach to Fernando Zalamea's advocacy for a "synthetic philosophy of contemporary mathematics" that engages directly with the creative practices of mathematicians.
References (20)
- Anderson, D. (1987). Creativity in the Philosophy of C.S. Peirce. Martinus Nijhoff Publishers. https://doi.org/10.1007/978-94-015-7760-1
- Barrena, S. (2021). El razonamiento diagramático en Charles S. Peirce: Imaginación y pensamiento visual. In J. A. Flórez & C. Garzón (Eds.), Peirce en Hispanoamérica: Número 9-2021 (pp. XX-XX). Manizales: Universidad de Caldas.
- Chandrasekaran, B. (1995). Diagrammatic reasoning: Cognitive and computational perspectives. Cambridge, MA: AAAI Press/The MIT Press.
- Forster, P. (2011). Peirce and the threat of nominalism. Cambridge: Cambridge University Press. https://doi.org/10.1017/CBO9780511921223
- Hoffmann, M. H. G. (2003). Peirce's "Diagrammatic Reasoning" as a solution to the learning paradox. In G. Debrock (Ed.), Process pragmatism: Essays on a quiet philosophical revolution (pp. 121-143). Amsterdam: Rodopi.
- Hookway, C. (2010). The form of a relation: Peirce and mathematical structuralism. In M. E. Moore (Ed.), New essays on Peirce's mathematical philosophy (pp. 19-40). Chicago: Open Court.
- Mirzakhani, M. (2007). Simple geodesics and Weil-Petersson volumes of moduli spaces of bordered Riemann surfaces. Inventiones Mathematicae, 167(1), 179-222. https://doi.org/10.1007/s00222-006-0013-2
- Oostra, A. (2009). Los gráficos Alfa de Peirce aplicados a la lógica intuicionista. Cuadernos de Sistemática Peirceana, 2.
- Oostra, A. (2011). Gráficos existenciales Beta intuicionistas. Cuadernos de Sistemática Peirceana, 3.
- Peirce, C. S. (1931-1958). Collected papers of Charles Sanders Peirce (Vols. 1-8). Harvard University Press.
- Peirce, C. S. (1976). The new elements of mathematics by Charles S. Peirce (Vol. I: Arithmetic, Vol. II: Algebra and Geometry, Vol. III/1 and III/2: Mathematical Miscellanea, Vol. IV: Mathematical Philosophy). C. Eisele (Ed.). Mouton Publishers.
- Peirce, C. S. (1986). Writings of Charles S. Peirce: A chronological edition, Volume III, 1872-1878 (Peirce Edition Project, Ed.). Bloomington, IN: Indiana University Press.
- Perelman, G. (2002). The entropy formula for the Ricci flow and its geometric applications. arXiv preprint math/0211159. https://doi.org/10.48550/arXiv.math/0211159
- Roberts, D. (1973). The existential graphs of Charles S. Peirce. Mouton. https://doi.org/10.1515/9783110226225
- Shin, S.-J. (2002). The iconic logic of Peirce's graphs. Cambridge, MA: MIT Press. https://doi.org/10.7551/mitpress/3633.001.0001
- Shin, S.-J., & Lemon, O. (2011). Diagrams. In E. N. Zalta (Ed.), The Stanford Encyclopedia of Philosophy (Winter 2008 Edition). Retrieved from http://plato.stanford.edu/archives/win2008/entries/diagrams/ Singh, S. (1998). Fermat's enigma. Anchor Books.
- Tiercelin, C. (2010). Peirce on mathematical objects and mathematical objectivity. In M. E. Moore (Ed.), New essays on Peirce's mathematical philosophy (pp. 81-122). Chicago: Open Court.
- Wiles, A. (1995). Modular elliptic curves and Fermat's Last Theorem. Annals of Mathematics, 141(3), 443-551. https://doi.org/10.2307/2118559
- Zalamea, F. (2012). Synthetic philosophy of contemporary mathematics. Urbanomic/Sequence Press.
- Zhang, Y. (2014). Bounded gaps between primes. Annals of Mathematics, 179(3), 1121-1174. https://doi.org/10.4007/annals.2014.179.3.7