Academia.eduAcademia.edu

Outline

Fingerprint Recognition Using a Transfer Learning Method

2023, International journal of multimedia and image processing

https://doi.org/10.20533/IJMIP.2042.4647.2023.0069

Abstract

Individuals' recognition has been the major concern of many computer science scholars. This paper highlights the development of a biometric fingerprint recognition system using an artificial intelligence method. The methodology used is structured into three main steps: fingerprint image acquisition, feature extraction and comparison or matching. Firstly, we use non-contact fingerprint images for training the recognition model to allow the developed system to work without contact. Secondly, we used a database of nineteen individuals each having fifteen fingerprint images acquired without contact. To perform the transfer learning, we have exploited the MobileNets model while adapting its architecture to the new task of contactless fingerprint classification. After training the new model obtained, we performed it evaluation through a confusion matrix. This evaluation reveals that the developed method confuses one individual out of 19, i.e. a confusion rate of 5.26%. This rate testifies to the efficiency of the method used for non-contact fingerprint recognition.

References (30)

  1. References
  2. Y. Safaa El-Din, M. N. Moustafa, et H. Mahdi, « Deep convolutional neural networks for face and iris presentation attack detection: survey and case study », IET Biom., vol. 9, no 5, p. 179-193, sept. 2020, DOI: 10.1049/iet- bmt.2020.0004.
  3. T. Djara, A.-A. Sobabe, M. Agbomahena, et A. Vianou, « Practical Method for Evaluating the Performance of a Biometric Algorithm: Second EAI International Conference, AFRICATEK 2018, Cotonou, Benin, May 29- 30, 2018, Proceedings », 2019, p. 125-132. DOI: 10.1007/978-3-030-05198-3_11.
  4. A. K. Jain, A. A. Ross, et K. Nandakumar, Introduction to Biometrics. Boston, MA: Springer US, 2011. DOI: 10.1007/978-0-387-77326-1.
  5. F. Jan, M. I. B. Ahmed, et N. Min-Allah, « Databases for Iris Biometric Systems: A Survey », SN Comput. Sci., vol. 1, no 6, p. 324, Nov. 2020, DOI: 10.1007/s42979-020- 00344-3.
  6. S. Ayeswarya et J. Norman, « A survey on different continuous authentication systems », Int. J. Biom., vol. 11, no 1, p. 67, 2019, DOI: 10.1504/IJBM.2019.096574.
  7. K. Prihodova et M. Hub, Biometric Privacy through Hand Geometry-A Survey, in 2019 International Conference on Information and Digital Technologies (IDT), Zilina, Slovakia: IEEE, juin 2019, p. 395-401. DOI: 10.1109/DT.2019.8813660.
  8. The biometrics market. https://www.biometrie- online.net/biometrie/le-marche (consulté le 24 octobre 2022).
  9. A.-A. Sobabe Ali Tahirou et al., « Authentification par la biométrie multimodale sans contact »: Thesis, EPAC/UAC, 2021. Consulté le: 26 octobre 2022. [En ligne]. Disponible sur: http://biblionumeric.epac- uac.org:8080/jspui/handle/123456789/2845.
  10. T. Djara, A. M. Ousmane, et A. Vianou, « Emotional State Recognition Using Facial Expression, Voice, and Physiological Signal » :, Int. J. Robot. Appl. Technol., vol. 6, no 1, p. 1-20, janv. 2018, DOI: 10.4018/IJRAT.2018010101.
  11. Y. Kortli, M. Jridi, A. Al Falou, et M. Atri, « Face Recognition Systems: A Survey », Sensors, vol. 20, no 2, p. 342, janv. 2020, DOI: 10.3390/s20020342.
  12. A. Jain, P. Flynn, et A. Ross, Handbook of Biometrics. 2008. DOI: 10.1007/978-0-387-71041-9.
  13. M. Lemmouchi, Reconnaissance Biométrique par Fusion Multimodale », doctoral, Université de Batna 2, 2020. Consulté le: 26 octobre 2022. [En ligne]. Disponible sur: http://eprints.univ-batna2.dz/1866/
  14. T. Borah, K. Sarma, et P. Talukdar. Fingerprint Recognition Using Artificial Neural Network. Int. J. Electron. Signals Syst., vol. 3, no 1, août 2020, DOI: 10.47893/IJESS.2013.1140.
  15. Biometric System Vulnerabilities: A Typology of Metadata. ASTES Journal. https://www.astesj.com/ v05/i01/p25/ (consulté le 26 octobre 2022).
  16. H. Nabil, « Méthode hybride en biométrie: Application à la paume de la main & l'Oreille », Thesis, 2017. Consulté le: 26 octobre 2022. [En ligne]. Disponible sur: http://dspace.univ-guelma.dz/ jspui/handle/123456789/116
  17. T. Djara, M. Assogba, A. Naït-ali, et A. Vianou, Registration of fingerprint images in contactless biometrics. Journée de la Recherche Scientifique de l'Université de Lomé, Togo, p. 133-145, juillet 2013.
  18. T. Djara, M. K. Assogba, et A. Vianou, « A Contactless Fingerprint Verification Method using a Minutiae Matching Technique », Int. J. Comput. Vis. Image Process., vol. 6, no 1, p. 12-27, janv. 2016, DOI: 10.4018/IJCVIP.2016010102.
  19. S. Albawi, T. A. Mohammed, et S. Al-Zawi, « Understanding of a convolutional neural network », in 2017 International Conference on Engineering and Technology (ICET), Antalya: IEEE, août 2017, p. 1-6. DOI: 10.1109/ICEngTechnol.2017.8308186.
  20. E. Bisong, Building Machine Learning and Deep Learning Models on Google Cloud Platform: A Comprehensive Guide for Beginners. Berkeley, CA: Apress, 2019. DOI: 10.1007/978-1-4842-4470-8.
  21. C. R. Maestre, F. A. Gregori, M. P. López, et R. R. Aldeguer, Jupyter Notebook: Theory And Practice Of Mathematical Models in Engineering and Architecture. ICERI2016 Proc, p. 6523-6530, 2016, DOI: 10.211 25/iceri.2016.0492.
  22. B. B. Benuwa, Y. Z. Zhan, B. Ghansah, D. K. Wornyo, et F. Banaseka Kataka, « A Review of Deep Machine Learning », Int. J. Eng. Res. Afr., vol. 24, p. 124-136, juin 2016, DOI: 10.4028/www.scientific. net/JERA.24.124.
  23. A. G. Howard et al., MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications, CoRR, vol. abs/1704.04861, 2017. Consulté le: 25 octobre 2022. [En ligne]. Disponible sur: http://arxiv.org/abs/1704.04861.
  24. T. Tieleman et G. Hinton, Lecture 6.5-rmsprop: Divide the gradient by a running average of its recent magnitude, COURSERA Neural Netw. Mach. Learn., vol. 4, no 2, p. 26-31, 2012.
  25. C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, et Z. Wojna, Rethinking the Inception Architecture for Computer Vision, in 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA: IEEE, juin 2016, p. 2818-2826. DOI: 10.1109/CVPR.2016.308.
  26. M. Cho, T. Kim, I.-J. Kim, K. Lee, et S. Lee, « Relational Deep Feature Learning for Heterogeneous Face Recognition », IEEE Trans. Inf. Forensics Secur., vol. 16, p. 376-388, 2021, DOI: 10.1109/TIFS. 2020.3013186.
  27. A. Krizhevsky, I. Sutskever, et G. E. Hinton, « ImageNet classification with deep convolutional neural networks », Commun. ACM, vol. 60, no 6, p. 84-90, mai 2017. DOI: 10.1145/3065386.
  28. G. Guo et N. Zhang, « A survey on deep learning based face recognition », Comput. Vis. Image Underst., vol. 189, p. 102805, déc. 2019, DOI: 10.1016/j.cviu.2019.102805.
  29. S. Minaee, E. Azimi, et A. Abdolrashidi, FingerNet: Pushing The Limits of Fingerprint Recognition Using Convolutional Neural Network, juill. 2019. Consulté le: 25 octobre 2022. [En ligne]. Disponible sur: https://ui.adsabs.harvard.edu/abs/20 19arXiv190712956M.
  30. Md. R. Islam, N. Tasnim, et S. B. Shuvo, « MobileNet Model for Classifying Local Birds of Bangladesh from Image Content Using Convolutional Neural Network, in 2019 10th International Conference on Computing, Communication and Networking Technologies (ICCCNT), Kanpur, India: IEEE, juill. 2019, p. 1-4. DOI: 10.1109/ICCCNT456 70.2019.8944403.