Academia.eduAcademia.edu

Outline

WarpDriver

2016, ACM Transactions on Graphics

https://doi.org/10.1145/2980179.2982442

Abstract

Microscopic crowd simulators rely on models of local interaction (e.g. collision avoidance) to synthesize the individual motion of each virtual agent. The quality of the resulting motions heavily depends on this component, which has significantly improved in the past few years. Recent advances have been in particular due to the introduction of a short-horizon motion prediction strategy that enables anticipated motion adaptation during local interactions among agents. However, the simplicity of prediction techniques of existing models somewhat limits their domain of validity. In this paper, our key objective is to significantly improve the quality of simulations by expanding the applicable range of motion predictions. To this end, we present a novel local interaction algorithm with a new context-aware, probabilistic motion prediction model. By context-aware, we mean that this approach allows crowd simulators to account for many factors, such as the influence of environment layouts or in-progress interactions among agents, and has the ability to simultaneously maintain several possible alternate scenarios for future motions and to cope with uncertainties on sensing and other agent's motions. Technically, this model introduces "collision probability fields" between agents, efficiently computed through the cumulative application of Warp Operators on a source Intrinsic Field. We demonstrate how this model significantly improves the quality of simulated motions in challenging scenarios, such as dense crowds and complex environments.

References (36)

  1. CHENNEY, S. 2004. Flow tiles. In Proceedings of the 2004 ACM SIG- GRAPH/Eurographics symposium on Computer animation, Eurographics Associa- tion, Aire-la-Ville, Switzerland, Switzerland, 233-242.
  2. CIVIDINI, J., APPERT-ROLLAND, C., AND HILHORST, H.-J. 2013. Diagonal pat- terns and chevron effect in intersecting traffic flows. EPL (Europhysics Letters) 102, 2, 20002.
  3. FEURTEY, F. 2000. Simulating the Collision Avoidance Behavior of Pedestrians. Master's thesis, Department of Electronic Engineering, University of Tokyo.
  4. GOLAS, A., NARAIN, R., AND LIN, M. 2013. Hybrid long-range collision avoid- ance for crowd simulation. In Proceedings of the ACM SIGGRAPH Symposium on Interactive 3D Graphics and Games, ACM, New York, NY, USA, I3D '13, 29-36.
  5. GUY, S. J., CHHUGANI, J., KIM, C., SATISH, N., LIN, M., MANOCHA, D., AND DUBEY, P. 2009. Clearpath: Highly parallel collision avoidance for multi-agent simulation. In Proceedings of the 2009 ACM SIGGRAPH/Eurographics Sympo- sium on Computer Animation, ACM, New York, NY, USA, SCA '09, 177-187.
  6. GUY, S. J., CURTIS, S., LIN, M. C., AND MANOCHA, D. 2012. Least-effort trajec- tories lead to emergent crowd behaviors. Phys. Rev. E 85 (Jan), 016110.
  7. GUY, S. J., VAN DEN BERG, J., LIU, W., LAU, R., LIN, M. C., AND MANOCHA, D. 2012. A statistical similarity measure for aggregate crowd dynamics. ACM Trans. Graph. 31, 6 (Nov.), 190:1-190:11.
  8. HELBING, D., AND MOLN ÁR, P. 1995. Social force model for pedestrian dynamics. Physical Review E 51, 5, 4282-4286.
  9. HELBING, D., FARKAS, I., AND VICSEK, T. 2000. Simulating dynamical features of escape panic. Nature 407, 6803, 487-490.
  10. JIN, X., XU, J., WANG, C. C. L., HUANG, S., AND ZHANG, J. 2008. Interactive control of large-crowd navigation in virtual environments using vector fields. IEEE Comput. Graph. Appl. 28, 6 (Nov.), 37-46.
  11. JU, E., CHOI, M., PARK, M., LEE, J., LEE, K., AND TAKAHASHI, S. 2010. Mor- phable crowds. ACM Trans. Graph. 29, 140:1-140:10.
  12. KAPADIA, M., SINGH, S., HEWLETT, W., AND FALOUTSOS, P. 2009. Egocentric affordance fields in pedestrian steering. In Proceedings of the 2009 Symposium on Interactive 3D Graphics and Games, ACM, New York, NY, USA, I3D '09, 215- 223.
  13. KARAMOUZAS, I., HEIL, P., BEEK, P., AND OVERMARS, M. H. 2009. A predictive collision avoidance model for pedestrian simulation. In Proceedings of the 2Nd International Workshop on Motion in Games, Springer-Verlag, Berlin, Heidelberg, MIG '09, 41-52.
  14. KARAMOUZAS, I., SKINNER, B., AND GUY, S. J. 2014. Universal power law gov- erning pedestrian interactions. Phys. Rev. Lett. 113 (Dec), 238701.
  15. KENDALL, M. G. 1938. A new measure of rank correlation. Biometrika 30, 1/2, 832 81-93.
  16. KIM, S., GUY, S. J., LIU, W., WILKIE, D., LAU, R. W., LIN, M. C., AND 834 MANOCHA, D. 2014. Brvo: Predicting pedestrian trajectories using velocity-space 835 reasoning. The International Journal of Robotics Research.
  17. KRETZ, T., AND SCHRECKENBERG, M. 2008. The f.a.s.t.-model. CoRR 837 abs/0804.1893.
  18. LERNER, A., CHRYSANTHOU, Y., AND LISCHINSKI, D. 2007. Crowds by example. 839 Computer Graphics Forum 26, 3, 655-664.
  19. LIU, C. K., HERTZMANN, A., AND POPOVI Ć, Z. 2005. Learning physics-based 841 motion style with nonlinear inverse optimization. ACM Trans. Graph. 24, 3 (July), 842 1071-1081.
  20. NARAIN, R., GOLAS, A., CURTIS, S., AND LIN, M. C. 2009. Aggregate dynamics 844 for dense crowd simulation. ACM Transactions on Graphics 28, 122:1-122:8.
  21. OLIVIER, A.-H., MARIN, A., CR ÉTUAL, A., AND PETTR É, J. 2012. Minimal 846 predicted distance: A common metric for collision avoidance during pairwise in- 847 teractions between walkers. Gait & posture 36, 3, 399-404.
  22. OND ŘEJ, J., PETTR É, J., OLIVIER, A.-H., AND DONIKIAN, S. 2010. A synthetic- 849 vision based steering approach for crowd simulation. ACM Trans. Graph. 29, 4 850 (July), 123:1-123:9.
  23. PARIS, S., PETTR, J., AND DONIKIAN, S. 2007. Pedestrian reactive navigation for 852 crowd simulation: a predictive approach. Computer Graphics Forum 26, 3, 665- 853 674.
  24. PATIL, S., VAN DEN BERG, J., CURTIS, S., LIN, M. C., AND MANOCHA, D. 2011. 855 Directing crowd simulations using navigation fields. IEEE Transactions on Visual- 856 ization and Computer Graphics 17 (February), 244-254.
  25. PELLEGRINI, S., ESS, A., SCHINDLER, K., AND VAN GOOL, L. 2009. You'll 858 never walk alone: Modeling social behavior for multi-target tracking. In Computer 859 Vision, 2009 IEEE 12th International Conference on, 261-268.
  26. PETTR É, J., OND ŘEJ, J., OLIVIER, A.-H., CRETUAL, A., AND DONIKIAN, S. 2009.
  27. 861 Experiment-based modeling, simulation and validation of interactions between vir- 862 tual walkers. In Proceedings of the 2009 ACM SIGGRAPH/Eurographics Sympo- 863 sium on Computer Animation, ACM, New York, NY, USA, SCA '09, 189-198.
  28. 864 REYNOLDS, C. W. 1987. Flocks, herds and schools: A distributed behavioral model. 865 SIGGRAPH Computer Graphics 21, 4, 25-34.
  29. REYNOLDS, C. 1999. Steering behaviors for autonomous characters. In Game Devel- 867 opers Conference 1999, 763-782.
  30. SCHADSCHNEIDER, A. 2001. Cellular automaton approach to pedestrian dynamics - 869 theory. 11.
  31. TREUILLE, A., COOPER, S., AND POPOVI Ć, Z. 2006. Continuum crowds. In SIG- 871 GRAPH '06, ACM, New York, NY, USA, 1160-1168.
  32. VAN DEN BERG, J., LIN, M., AND MANOCHA, D. 2008. Reciprocal velocity ob- 873 stacles for real-time multi-agent navigation. In IEEE International Conference on 874 Robotics and Automation, 1928-1935.
  33. VAN DEN BERG, J., SNAPE, J., GUY, S., AND MANOCHA, D. 2011. Reciprocal col- 876 lision avoidance with acceleration-velocity obstacles. In Robotics and Automation 877 (ICRA), 2011 IEEE International Conference on, 3475-3482.
  34. VAN DEN BERG, J., GUY, S. J., LIN, M., AND MANOCHA, D. 2011. Reciprocal 879 n-body collision avoidance. In Robotics Research. Springer, 3-19.
  35. WOLINSKI, D., GUY, S., OLIVIER, A.-H., LIN, M., MANOCHA, D., AND PETTR É, 881 J. 2014. Parameter Estimation and Comparative Evaluation of Crowd Simulations. 882 Computer Graphics Forum 33, 2, 303-312.
  36. 883 ZHOU, B., TANG, X., AND WANG, X. 2012. Coherent filtering: detecting coherent 884 motions from crowd clutters. In Computer Vision-ECCV 2012. Springer, 857-871.