Academia.eduAcademia.edu

Outline

Progress in Computer-Assisted Inductive

2006

Abstract

In this position paper we briefly review the development history of automated inductive theorem proving and computer-assisted mathematical induction. We think that the current low expectations on progress in this field result from a faulty narrow-scope historical projection. Our main motivation is to explain-on an abstract but hopefully sufficiently descriptive level-why we believe that future progress in the field is to result from human-orientedness and descente infinie.

References (119)

  1. Fabio Acerbi (2000). Plato: Parmenides 149a7-c3. A Proof by Complete Induction?. Archive for History of Exact Sciences 55, pp. 57-76, Springer.
  2. Wilhelm Ackermann (1940). Zur Widerspruchsfreiheit der Zahlentheorie. Mathema- tische Annalen 117, pp. 163-194. Received Aug. 15, 1939. http://dz-srv1. sub.uni-goettingen.de/sub/digbib/loader?did=D37625 (July 23, 2007).
  3. Peter B. Andrews (1972). General Models, Descriptions, and Choice in Type Theory. J. Symbolic Logic 37, pp. 385-394.
  4. Peter B. Andrews (2002). An Introduction to Mathematical Logic and Type Theory: To Truth Through Proof. 2 nd ed. (1 st ed. 1986), Academic Press (Elsevier).
  5. Günter Asser (ed.) (1990). Guiseppe Peano -Arbeiten zur Analysis und zur mathemati- schen Logik. Teubner-Archiv zur Mathematik, Vol. 13, B. G. Teubner Verlagsgesellschaft, Leipzig.
  6. Serge Autexier (2003). Hierarchical Contextual Reasoning. Ph.D. thesis. Saarland Univ..
  7. Serge Autexier, Dieter Hutter, Heiko Mantel, Axel Schairer (1999). INKA 5.0 -A Logical Voyager. 16 th CADE 1999, LNAI 1632, pp. 207-211, Springer.
  8. Serge Autexier, Christoph Benzmüller, Chad E. Brown, Armin Fiedler, Dieter Hutter, Andreas Meier, Martin Pollet, Tobias Schmidt-Samoa, Jörg Siekmann, Georg Rock, Werner Stephan, Marc Wagner, Claus-Peter Wirth (2004). Mathematics Assistance Sys- tems. Lecture course at Saarland Univ., WS 2004/5. http://www.ags.uni-sb. de/~omega/teach/MAS0405/ (April 15, 2005).
  9. Serge Autexier, Christoph Benzmüller, Dominik Dietrich, Andreas Meier, Claus-Peter Wirth (2006). A Generic Modular Data Structure for Proof Attempts Alternating on Ideas and Granularity. 4 th MKM 2005, LNAI 3863, pp. 126-142, Springer. http://www. ags.uni-sb.de/~cp/p/pds/welcome.html (July 22, 2005).
  10. Jürgen Avenhaus, Ulrich Kühler, Tobias Schmidt-Samoa, Claus-Peter Wirth (2003). How to Prove Inductive Theorems? QUODLIBET!. 19 th CADE 2003, LNAI 2741, pp. 328- 333, Springer. http://www.ags.uni-sb.de/~cp/p/quodlibet/welcome. html (July 23, 2003).
  11. Matthias Baaz, Alexander Leitsch (1995). Methods of Functional Extension. Collegium Logicum, Annals of the Kurt Gödel Society, Vol. 1, pp. 87-122, Springer.
  12. Klaus Barner (2001). Das Leben Fermats. DMV-Mitteilungen 3/2001, pp. 12-26.
  13. David Basin, Toby Walsh (1996). A Calculus for and Termination of Rippling. J. Automa- ted Reasoning 16, pp. 147-180, Kluwer (Springer).
  14. Susanne Biundo, Birgit Hummel, Dieter Hutter, Christoph Walther (1986). The Karlsruhe Induction Theorem Proving System. 8 th CADE 1986, LNCS 230, pp. 672-674, Springer.
  15. Robert S. Boyer, J S. Moore (1979). A Computational Logic. Academic Press (Elsevier).
  16. Robert S. Boyer, J S. Moore (1988). A Computational Logic Handbook. Academic Press.
  17. Arnim Buch, Thomas Hillenbrand (1996). WALDMEISTER: Development of a High Per- formance Completion-Based Theorem Prover. SEKI-Report SR-96-01, FB Informatik, Univ. Kaiserslautern.
  18. Alan Bundy (1988). The use of Explicit Plans to Guide Inductive Proofs. DAI Re- search Paper No. 349, Dept. Artificial Intelligence, Univ. Edinburgh. Short version in: 9 th CADE 1988, LNAI 310, pp. 111-120, Springer.
  19. Alan Bundy (1989). A Science of Reasoning. DAI Research Paper No. 445, Dept. Artificial Intelligence, Univ. Edinburgh. Also in: [63], pp. 178-198.
  20. Alan Bundy (1999). The Automation of Proof by Mathematical Induction. Informatics Research Report No. 2, Division of Informatics, Univ. Edinburgh. Also in: [85], Vol. 1, pp. 845-911.
  21. Alan Bundy, Frank van Harmelen, Jane Hesketh, Alan Smaill, Andrew Stevens (1989). A Rational Reconstruction and Extension of Recursion Analysis. In: N. S. Sridharan (ed.). Proc. 11 th Int. Joint Conf. on Artificial Intelligence (IJCAI), pp. 359-365, Morgan Kaufman (Elsevier).
  22. Alan Bundy, Frank van Harmelen, C. Horn, Alan Smaill (1990). The Oyster-Clam System. 10 th CADE 1990, LNAI 449, pp. 647-648, Springer.
  23. Alan Bundy, Andrew Stevens, Frank van Harmelen, Andrew Ireland, Alan Smaill (1991). Rippling: A Heuristic for Guiding Inductive Proofs. DAI Research Paper No. 567, Dept. Artificial Intelligence, Univ. Edinburgh. Also in: Artificial Intelligence (1993) 62(2), pp. 185-253.
  24. Alan Bundy, Dieter Hutter, David Basin, Andrew Ireland (2005). Rippling: Meta-Level Guidance for Mathematical Reasoning. Cambridge Univ. Press.
  25. Alan Bundy, Lucas Dixon, Jeremy Gow, Jacques Fleuriot (2006). Constructing Induction Rules for Deductive Synthesis Proofs. Electronic Notes in Theoretical Computer Sci. 153, pp. 3-21, Elsevier.
  26. Paolo Bussotti (2006). From Fermat to Gauß: indefinite descent and methods of reduction in number theory. Algorismus 55, Dr. Erwin Rauner Verlag, Augsburg.
  27. Louise A. Dennis, Mateja Jamnik, Martin Pollet (2005). On the Comparison of Proof Plan- ning Systems λCL A M, ΩMEGA and ISAPLANNER. Electronic Notes in Theoretical Com- puter Sci. 151, pp. 93-110, Elsevier.
  28. Lucas Dixon (2005). Interactive and Hierarchical Tracing of Techniques in ISA- PLANNER. Accepted for presentation at: Workshop on User Interfaces for Theorem Provers (UITP 2005). http://homepages.inf.ed.ac.uk/ldixon/papers/ uitp-05-traces/isaptracing.ps.gz (Aug. 11, 2005).
  29. Lucas Dixon, Jacques Fleuriot (2003). ISAPLANNER: A Prototype Proof Planner in IS- ABELLE. 19 th CADE 2003, LNAI 2741, pp. 279-283, Springer.
  30. Herbert B. Enderton (1973). A Mathematical Introduction to Logic. 2 nd printing, Academic Press (Elsevier).
  31. Euclid of Alexandria (ca. 300 B.C.). Elements. English translation: Thomas L. Heath (ed.). The Thirteen Books of Euclid's Elements. Cambridge Univ. Press, 1908. Web version: http://www.perseus.tufts.edu/cgi-bin/ptext?doc= Perseus:text:1999.01.0086 (Aug. 15, 2006).. Alternative English web ver- sion: D. E. Joyce (ed.). Euclid's Elements. Dept. Math. & Comp. Sci., Clark Univ., Worcester, MA. http://aleph0.clarku.edu/~djoyce/java/elements/ Euclid.html (March 24, 2003).
  32. Pierre Fermat (1891ff.). OEuvres de Fermat. Paul Tannery, Charles Henry (eds.), Gauthier-Villars, Paris. http://fr.wikisource.org/wiki/%C5%92uvres_ de_Fermat (Aug. 15, 2006).
  33. Melvin Fitting (1983). Proof Methods for Modal and Intuitionistic Logics. D. Reidel, Dor- drecht.
  34. Melvin Fitting (1996). First-Order Logic and Automated Theorem Proving. 2 nd extd. ed. (1 st ed. 1990), Springer.
  35. Melvin Fitting (2002). Types, Tableaus, and Gödel's God. Kluwer (Springer).
  36. Gottlob Frege (1879). Begriffsschrift, eine der arithmetischen nachgebildete Formel- sprache des reinen Denkens. Verlag von L. Nebert, Halle an der Saale.
  37. Kurt von Fritz (1945). The Discovery of Incommensurability by Hippasus of Metapontum. Annals of Mathematics 46, pp. 242-264. German translation Die Entdeckung der Inkom- mensurabilität durch Hippasos von Metapont in: Oscar Becker (ed.). Zur Geschichte der griechischen Mathematik, pp. 271-308, Wissenschaftliche Buchgesellschaft, Darmstadt, 1965.
  38. Dov M. Gabbay, C. J. Hogger, J. Alan Robinson (eds.) (1993ff.). Handbook of Logic in Artificial Intelligence and Logic Programming. Clarendon Press.
  39. Gerhard Gentzen (1934f.). Untersuchungen über das logische Schließen. Mathematische Zeitschrift 39, pp. 176-210, 405-431.
  40. Gerhard Gentzen (1938). Die gegenwärtige Lage in der mathematischen Grundlagen- forschung -Neue Fassung des Widerspruchsfreiheitsbeweises für die reine Zahlentheorie. Forschungen zur Logik und zur Grundlegung der exakten Wissenschaften, Folge 4, Leip- zig.
  41. Martin Giese, Wolfgang Ahrendt (1999). Hilbert's ε-Terms in Automated Theorem Prov- ing. 8 th TABLEAUX 1999, LNAI 1617, pp. 171-185, Springer.
  42. Kurt Gödel (1931). Über formal unentscheidbare Sätze der Principia Mathematica und verwandter Systeme I. Monatshefte für Mathematik und Physik 38, pp. 173-198.
  43. Kurt Gödel (1986ff.). Collected Works. Solomon Feferman (ed.), Oxford Univ. Press.
  44. Jeremy Gow (2004). The Dynamic Creation of Induction Rules Using Proof Planning. Ph.D. thesis, School of Informatics, Univ. Edinburgh.
  45. Bernhard Gramlich, Wolfgang Lindner (1991). A Guide to UNICOM, an Inductive Theorem Prover Based on Rewriting and Completion Techniques. SEKI-Report SR-91-17 (SFB), FB Informatik, Univ. Kaiserslautern. http://agent.informatik.uni-kl.de/ seki/1991/Lindner.SR-91-17.ps.gz (May 09, 2000).
  46. Bernhard Gramlich, Claus-Peter Wirth (1996). Confluence of Terminating Conditional Term Rewriting Systems Revisited. 7 th RTA 1996, LNCS 1103, pp. 245-259, Springer. http://ags.uni-sb.de/~cp/p/rta96/welcome.html (Aug. 05, 2001).
  47. David Hilbert, Paul Bernays (1968/70). Grundlagen der Mathematik. 2 nd rev. ed. (1 st ed. 1934/39), Springer.
  48. Dieter Hutter (1990). Guiding Inductive Proofs. 10 th CADE 1990, LNAI 449, pp. 147-161, Springer.
  49. Dieter Hutter (1991). Mustergesteuerte Strategien für das Beweisen von Gleichungen. Ph.D. thesis, Univ. Karlsruhe.
  50. Dieter Hutter (1994). Synthesis of Induction Orderings for Existence Proofs. 12 th CADE 1994, LNAI 814, pp. 29-41, Springer.
  51. Dieter Hutter (1997). Colouring Terms to Control Equational Reasoning. J. Automated Reasoning 18, pp. 399-442, Kluwer (Springer).
  52. Dieter Hutter, Alan Bundy (1999). The Design of the CADE-16 Inductive Theorem Prover Contest. 16 th CADE 1999, LNAI 1632, pp. 374-377, Springer.
  53. Dieter Hutter, Werner Stephan (eds.) (2005). Mechanizing Mathematical Reasoning: Essays in Honor of Jörg Siekmann on the Occasion of His 60 th Birthday. LNAI 2605, Sprin- ger.
  54. Andrew Ireland, Alan Bundy (1994). Productive Use of Failure in Inductive Proof. DAI Research Paper No. 716, Dept. Artificial Intelligence, Univ. Edinburgh. Also in: J. Auto- mated Reasoning (1996) 16(1-2), pp. 79-111, Kluwer (Springer).
  55. Matt Kaufmann, Panagiotis Manolios, J S. Moore (2000). Computer-Aided Reasoning: An Approach. Kluwer (Springer).
  56. Hubert C. Kennedy (1973). Selected works of Guiseppe Peano. George Allen & Unwin, London.
  57. Ina Kraan, David Basin, Alan Bundy (1995). Middle-Out Reasoning for Synthesis and Induction. DAI Research Paper No. 729, Dept. Artificial Intelligence, Univ. Edinburgh. Also in: J. Automated Reasoning (1996) 16(1-2), pp. 113-145, Kluwer (Springer).
  58. Georg Kreisel (1965). Mathematical Logic. In: [86], Vol. III, pp. 95-195.
  59. Hans-Jörg Kreowski, Ugo Montanari, Fernando Orejas, Grzegorz Rozenberg, Gabriele Taentzer (eds.) (2005). Formal Methods in Software and Systems Modeling, Essays Dedi- cated to Hartmut Ehrig, on the Occasion of His 60 th Birthday. LNCS 3393, Springer.
  60. Ulrich Kühler (2000). A Tactic-Based Inductive Theorem Prover for Data Types with Partial Operations. Ph.D. thesis, Infix, Akademische Verlagsgesellschaft Aka GmbH, Sankt Augustin, Berlin. http://www.ags.uni-sb.de/~cp/p/kuehlerdiss/ welcome.html (July 23, 2005).
  61. Ulrich Kühler, Claus-Peter Wirth (1996). Conditional Equational Specifications of Data Types with Partial Operations for Inductive Theorem Proving. SEKI-Report SR-96-11, FB Informatik, Univ. Kaiserslautern. Short version in: 8 th RTA 1997, LNCS 1232, pp. 38- 52, Springer. http://www.ags.uni-sb.de/~cp/p/rta97/welcome.html (Aug. 05, 2001).
  62. Thomas S. Kuhn (1962). The Structure of Scientific Revolutions. Univ. Chicago Press.
  63. Jean-Louis Lassez, Gordon D. Plotkin (eds.) (1991). Computational Logic -Essays in Honor of J. Alan Robinson. MIT Press.
  64. Al(bert) C. Leisenring (1969). Mathematical Logic and Hilbert's ε-Symbol. Gordon and Breach, New York.
  65. Bernd Löchner (2006). Things to know when implementing LPO. Int. J. Artificial Intelli- gence Tools (2006) 15(1), pp. 53-79. Short version in: Geoff Sutcliffe, Stephan Schulz, T. Tammet (eds.). Proc. 1 st Workshop on Empirically Successful First Order Reasoning (ESFOR'04), 2004.
  66. Bernd Löchner (2006). Advances in Equational Theorem Proving -Architecture, Al- gorithms, and Redundancy Avoidance. Ph.D. thesis, Univ. Kaiserslautern. http:// kluedo.ub.uni-kl.de/volltexte/2006/1969/ (Aug. 25, 2006).
  67. Michael Sean Mahoney (1994). The Mathematical Career of Pierre de Fermat 1601-1665. 2 nd rev. ed. (1 st ed. 1973), Princeton Univ. Press.
  68. Dale A. Miller (1992). Unification under a Mixed Prefix. J. Symbolic Computation 14, pp. 321-358, Academic Press (Elsevier).
  69. Tobias Nipkow, Lawrence C. Paulson, Markus Wenzel (2000). ISABELLE's Logics: HOL. Web only. http://isabelle.in.tum.de/PSV2000/doc/logics-HOL.pdf (Sept. 11, 2005).
  70. Tobias Nipkow, Lawrence C. Paulson, Markus Wenzel (2002). ISABELLE/HOL -A Proof Assistant for Higher-Order Logic. LNCS 2283, Springer.
  71. P. Odifreddi (ed.) (1990). Logic and Computer Science. Academic Press (Elsevier).
  72. Peter Padawitz (2005). Expander2. In: [59], pp. 236-258.
  73. Lawrence C. Paulson (1989). The Foundation of a Generic Theorem Prover. J. Automated Reasoning 5, pp. 363-397, Kluwer (Springer).
  74. Lawrence C. Paulson (1990). ISABELLE: The Next 700 Theorem Provers. In: [71], pp. 361-386.
  75. Lawrence C. Paulson (2004). The ISABELLE Reference Manual. With Contribu- tions by Tobias Nipkow and Markus Wenzel, April 20, 2004. Web only. http: //www.cl.cam.ac.uk/Research/HVG/Isabelle/dist/packages/ Isabelle/doc/ref.pdf (Sept. 13, 2005).
  76. Guiseppe Peano (ed.) (1884). Angelo Genocchi -Calcolo differenziale e principii di cal- colo integrale. Fratelli Bocca, Torino. German translation: [79].
  77. Guiseppe Peano (1896f.). Studii di Logica Matematica. Atti della Reale Accademia delle Scienze di Torino -Classe di Scienze Morali, Storiche e Filologiche e Classe di Scienze Fisiche, Matematiche e Naturali 32, pp. 565-583. Also in: Atti della Reale Accademia delle Scienze di Torino -Classe di Scienze Fisiche, Matematiche e Naturali 32, pp. 361- 397. English translation Studies in Mathematical Logic in: [56], pp. 190-205. German translation: [78].
  78. Guiseppe Peano (1899). Über mathematische Logik. German translation of [77]. In: [79], Appendix 1. Facsimile also in: [5], pp. 10-26.
  79. Guiseppe Peano (ed.) (1899). Angelo Genocchi -Differentialrechnung und Grundzüge der Integralrechnung. German translation of [76], B. G. Teubner Verlagsgesellschaft, Leip- zig.
  80. Martin Protzen (1994). Lazy Generation of Induction Hypotheses. 12 th CADE 1994, LNAI 814, pp. 42-56, Springer.
  81. Martin Protzen (1995). Lazy Generation of Induction Hypotheses and Patching Faulty Conjectures. Ph.D. thesis, Infix, Akademische Verlagsgesellschaft Aka GmbH, Sankt Au- gustin, Berlin.
  82. Martin Protzen (1996). Patching Faulty Conjectures. 13 th CADE 1996, LNAI 1104, pp. 77- 91, Springer.
  83. Alexander Riazanov, Andrei Voronkov (2001). Vampire 1.1 (System Description). 1 st IJCAR 2001, LNAI 2083, pp. 376-380, Springer.
  84. J. Alan Robinson (1965). A Machine-Oriented Logic based on the Resolution Principle. In: [91], Vol. 1, pp. 397-415.
  85. J. Alan Robinson, Andrei Voronkov (eds.) (2001). Handbook of Automated Reasoning. Elsevier.
  86. T. L. Saaty (ed.) (1965). Lectures on Modern Mathematics. John Wiley & Sons, New York.
  87. Tobias Schmidt-Samoa (2004). The New Standard Tactics of the Inductive Theorem Prover QUODLIBET. SEKI-Report SR-2004-01, ISSN 1437-4447. http://www. ags.uni-sb.de/~cp/p/sr200401/welcome.html (April 15, 2005).
  88. Tobias Schmidt-Samoa (2006). An Even Closer Integration of Linear Arithmetic into In- ductive Theorem Proving. Electronic Notes in Theoretical Computer Sci. 151, pp. 3-20, Elsevier. http://www.elsevier.com/locate/entcs (Aug. 20, 2006).
  89. Tobias Schmidt-Samoa (2006). Flexible Heuristics for Simplification with Conditional Lemmas by Marking Formulas as Forbidden, Mandatory, Obligatory, and Generous. J. Ap- plied Non-Classical Logics 16(1-2), pp. 209-239. http://www.ags.uni-sb.de/ ~cp/p/jancl/welcome.html (March 08, 2006).
  90. Tobias Schmidt-Samoa (2006). Flexible Heuristic Control for Combining Automa- tion and User-Interaction in Inductive Theorem Proving. Ph.D. thesis, Univ. Kaisers- lautern. http://www.ags.uni-sb.de/~cp/p/samoadiss/welcome.html (July 30, 2006).
  91. Jörg Siekmann, Graham Wrightson (eds.) (1983). Automation of Reasoning. Springer.
  92. Jörg Siekmann, Christoph Benzmüller, Vladimir Brezhnev, Lassaad Cheikhrouhou, Armin Fiedler, Andreas Franke, Helmut Horacek, Michaël Kohlhase, Andreas Meier, Erica Melis, Markus Moschner, Immanuël Normann, Martin Pollet, Volker Sorge, Carsten Ullrich, Claus-Peter Wirth, Jürgen Zimmer (2002). Proof Development with ΩMEGA. 18 th CADE 2002, LNAI 2392, pp. 144-149, Springer. http://www.ags.uni-sb. de/~cp/p/omega/welcome.html (July 23, 2003).
  93. Konrad Slind (1996). Function Definition in Higher-Order Logic. 9 th TPHOLs 1996, LNCS 1125, pp. 381-397, Springer.
  94. Alan Smaill, Ian Green (1996). Higher-Order Annotated Terms for Proof Search. 9 th TPHOLs 1996, LNCS 1125, pp. 399-413, Springer.
  95. Raymond M. Smullyan (1968). First-Order Logic. Springer.
  96. Joachim Steinbach (1995). Simplification Orderings -History of Results. Fundamenta Informaticae 24, pp. 47-87.
  97. Andrew Stevens (1988). A Rational Reconstruction of Boyer and Moore's Technique for Constructing Induction Formulas. Y. Kodratoff (ed.). 8 th European Conf. on Artificial In- telligence (ECAI 1988), pp. 565-570, Pitman Publ..
  98. Andrew Stevens (1990). An Improved Method for the Mechanization of Inductive Proof. Ph.D. thesis, Dept. Artificial Intelligence, Univ. Edinburgh.
  99. Christian Urban, Christine Tasson (2005). Nominal Techniques in ISABELLE/HOL. 20 th CADE 2005, LNAI 3632, pp. 38-53, Springer.
  100. Lincoln A. Wallen (1990). Automated Proof Search in Non-Classical Logics. MIT Press.
  101. Christoph Walther (1988). Argument-Bounded Algorithms as a Basis for Automated Ter- mination Proofs. 9 th CADE 1988, LNAI 310, pp. 601-622, Springer.
  102. Christoph Walther (1992). Computing Induction Axioms. 3 rd LPAR 1992, LNAI 624, pp. 381-392, Springer.
  103. Christoph Walther (1993). Combining Induction Axioms by Machine. In: Ruzena Bajcsy (ed.). Proc. 13 th Int. Joint Conf. on Artificial Intelligence (IJCAI), pp. 95-101, Morgan Kaufman (Elsevier).
  104. Christoph Walther (1994). Mathematical Induction. In: [38], Vol. 2, pp. 127-228.
  105. Christoph Walther, Stephan Schweizer (2003). About ERIFUN. 19 th CADE 2003, LNAI 2741, pp. 322-327, Springer.
  106. Christoph Walther, Stephan Schweizer (2005). Automated Termination Analysis of Incom- pletely Defined Programs. 11 th LPAR 2004, LNAI 3452, pp. 332-346, Springer.
  107. Christoph Walther, Stephan Schweizer (2005). Reasoning about Incompletely Defined Pro- grams. 12 th LPAR 2005, LNAI 3835, pp. 427-442, Springer.
  108. Claus-Peter Wirth (1995). Syntactic Confluence Criteria for Positive/Negative-Condi- tional Term Rewriting Systems. SEKI-Report SR-95-09 (SFB), FB Informatik, Univ. Kai- serslautern. http://www.ags.uni-sb.de/~cp/p/sr9509/welcome.html (Aug. 05, 2001).
  109. Claus-Peter Wirth (1997). Positive/Negative-Conditional Equations: A Constructor-Based Framework for Specification and Inductive Theorem Proving. Ph.D. thesis, Verlag Dr. Ko- vač, Hamburg. http://www.ags.uni-sb.de/~cp/p/diss/welcome.html (Aug. 05, 2001).
  110. Claus-Peter Wirth (2002). A New Indefinite Semantics for Hilbert's epsilon. 11 th TAB- LEAUX 2002, LNAI 2381, pp. 298-314, Springer. http://www.ags.uni-sb.de/ ~cp/p/epsi/welcome.html (Feb. 04, 2002).
  111. Claus-Peter Wirth (2004). Descente Infinie + Deduction. Logic J. of the IGPL 12, pp. 1-96, Oxford Univ. Press. http://www.ags.uni-sb.de/~cp/p/d/welcome.html (Sept. 12, 2003).
  112. Claus-Peter Wirth (2005). History and Future of Implicit and Inductionless Induction: Beware the old jade and the zombie!. In: [53], pp. 192-203. http://www.ags. uni-sb.de/~cp/p/zombie/welcome.html (Dec. 02, 2002).
  113. Claus-Peter Wirth (2006). lim +, δ + , and Non-Permutability of β-Steps. SEKI-Report SR-2005-01, ISSN 1437-4447, rev. ed. of July 30, 2006. http://www.ags. uni-sb.de/~cp/p/nonpermut/welcome.html (July 30, 2006).
  114. Claus-Peter Wirth (2006). A Self-Contained Discussion of Fermat's Only Explicitly Known Proof by Descente Infinie. SEKI-Working-Paper SWP-2006-02, ISSN 1860-5931. http://www.ags.uni-sb.de/~cp/p/fermatsproof/welcome.html (Aug. 25, 2006).
  115. Claus-Peter Wirth (2007). Thomas S. Kuhn: The Structure of Scientific Revolu- tions -Zweisprachige Auszüge mit Deutschem Kommentar. SEKI-Working-Paper SWP-2007-01, ISSN 1860-5931. http://www.ags.uni-sb.de/~cp/p/kuhn (June 20, 2008).
  116. Claus-Peter Wirth (2008). Hilbert's epsilon as an Operator of Indefinite Committed Choice. J. Applied Logic, Elsevier, http://dx.doi.org/10.1016/j.jal. 2007.07.009. http://www.ags.uni-sb.de/~cp/p/epsi (Oct. 15, 2007).
  117. Claus-Peter Wirth (2008). Shallow Confluence of Conditional Term Rewriting Sys- tems. J. Symbolic Computation, Elsevier, http://dx.doi.org/10.1016/j.jsc. 2008.05.005. http://www.ags.uni-sb.de/~cp/p/shallow/welcome. html (May 31, 2008).
  118. Claus-Peter Wirth, Bernhard Gramlich (1994). On Notions of Inductive Validity for First- Order Equational Clauses. 12 th CADE 1994, LNAI 814, pp. 162-176, Springer. http: //www.ags.uni-sb.de/~cp/p/cade94/welcome.html (Aug. 05, 2001).
  119. Claus-Peter Wirth, Christoph Benzmüller, Armin Fiedler, Andreas Meier, Serge Autex- ier, Martin Pollet, Carsten Schürmann (2003). Human-Oriented Theorem Proving - Foundations and Applications. Lecture course at Saarland Univ., WS 2003/4. http: //www.ags.uni-sb.de/~cp/teaching/hotp (Sept. 12, 2003).