Academia.eduAcademia.edu

Outline

Non-supersymmetric attractors in string theory

2006, Journal of High Energy Physics

https://doi.org/10.1088/1126-6708/2006/03/022

Abstract

We find examples of non-supersymmetric attractors in Type II string theory compactified on a Calabi Yau threefold. For a non-supersymmetric attractor the fixed values to which the moduli are drawn at the horizon must minimise an effective potential. For Type IIA at large volume, we consider a configuration carrying D0, D2, D4 and D6 brane charge. When the D6 brane charge is zero, we find for some range of the other charges, that a non-supersymmetric attractor solution exists. When the D6 brane charge is non-zero, we find for some range of charges, a supersymmetry breaking extremum of the effective potential. Closer examination reveals though that it is not a minimum of the effective potential and hence the corresponding black hole solution is not an attractor. Away from large volume, we consider the specific case of the quintic in CP 4. Working in the mirror IIB description we find non-supersymmetric attractors near the Gepner point.

References (34)

  1. S. Ferrara, R. Kallosh and A. Strominger, Phys. Rev. D 52, 5412 (1995) [arXiv:hep- th/9508072].
  2. A. Strominger, Phys. Lett. B 383, 39 (1996) [arXiv:hep-th/9602111].
  3. S. Ferrara and R. Kallosh, Phys. Rev. D 54, 1514 (1996) [arXiv:hep-th/9602136].
  4. S. Ferrara and R. Kallosh, Phys. Rev. D 54, 1525 (1996) [arXiv:hep-th/9603090].
  5. S. Ferrara, G. W. Gibbons and R. Kallosh, Nucl. Phys. B 500, 75 (1997) [arXiv:hep-th/9702103].
  6. G. W. Gibbons, R. Kallosh and B. Kol, Phys. Rev. Lett. 77, 4992 (1996) [arXiv:hep-th/9607108].
  7. F. Denef, JHEP 0008, 050 (2000) [arXiv:hep-th/0005049].
  8. F. Denef, B. R. Greene and M. Raugas, JHEP 0105, 012 (2001) [arXiv:hep- th/0101135].
  9. H. Ooguri, A. Strominger and C. Vafa, Phys. Rev. D 70, 106007 (2004) [arXiv:hep- th/0405146].
  10. G. Lopes Cardoso, B. de Wit and T. Mohaupt, Phys. Lett. B 451, 309 (1999) [arXiv:hep-th/9812082].
  11. A. Dabholkar, [arXiv:hep-th/0409148].
  12. H. Ooguri, C. Vafa and E. P. Verlinde, [arXiv:hep-th/0502211].
  13. R. Dijkgraaf, R. Gopakumar, H. Ooguri and C. Vafa, [arXiv:hep-th/0504221].
  14. A. Sen, arXiv:hep-th/0505122.
  15. P. Kraus and F. Larsen, [arXiv:hep-th/0506176].
  16. A. Sen, [arXiv:hep-th/0506177].
  17. P. Kraus and F. Larsen, arXiv:hep-th/0508218.
  18. R. Kallosh, arXiv:hep-th/0510024.
  19. R. Kallosh, arXiv:hep-th/0509112.
  20. G. W. Gibbons and R. E. Kallosh, Phys. Rev. D 51, 2839 (1995) [arXiv:hep- th/9407118].
  21. K. Goldstein, N. Iizuka, R. P. Jena and S. P. Trivedi, arXiv:hep-th/0507096.
  22. J. M. Maldacena, A. Strominger and E. Witten, JHEP 9712, 002 (1997) [arXiv:hep-th/9711053]
  23. J. M. Maldacena and A. Strominger, Phys. Rev. Lett. 77, 428 (1996) [arXiv:hep- th/9603060].
  24. G. T. Horowitz, J. M. Maldacena and A. Strominger, Phys. Lett. B 383, 151 (1996) [arXiv:hep-th/9603109].
  25. D. M. Kaplan, D. A. Lowe, J. M. Maldacena and A. Strominger, Phys. Rev. D 55, 4898 (1997) [arXiv:hep-th/9609204].
  26. M. J. Duff and J. Rahmfeld, Nucl. Phys. B 481, 332 (1996) [arXiv:hep-th/9605085].
  27. M. J. Duff, J. T. Liu and J. Rahmfeld, Nucl. Phys. B 494, 161 (1997) [arXiv:hep- th/9612015].
  28. A. Dabholkar, Phys. Lett. B 402, 53 (1997) [arXiv:hep-th/9702050].
  29. A. Dabholkar, G. Mandal and P. Ramadevi, Nucl. Phys. B 520, 117 (1998) [arXiv:hep-th/9705239].
  30. A. Dabholkar, A. Sen, P. Tripathy and S. P. Trivedi, To appear.
  31. K. Behrndt, G. Lopes Cardoso, B. de Wit, R. Kallosh, D. Lust and T. Mohaupt, Nucl. Phys. B 488, 236 (1997) [arXiv:hep-th/9610105].
  32. M. Shmakova, Phys. Rev. D 56, 540 (1997) [arXiv:hep-th/9612076].
  33. A. Giryavets, S. Kachru, P. K. Tripathy and S. P. Trivedi, JHEP 0404, 003 (2004) [arXiv:hep-th/0312104].
  34. P. Candelas, X. C. De La Ossa, P. S. Green and L. Parkes, Nucl. Phys. B 359, 21 (1991).