Academia.eduAcademia.edu

Outline

Non-BPS attractors in 5d and 6d extended supergravity

2008, Nuclear Physics B

https://doi.org/10.1016/J.NUCLPHYSB.2007.11.025

Abstract

We connect the attractor equations of a certain class of N = 2, d = 5 supergravities with their (1, 0), d = 6 counterparts, by relating the moduli space of non-BPS d = 5 black hole/black string attractors to the moduli space of extremal dyonic black string d = 6 non-BPS attractors. For d = 5 real special symmetric spaces and for N = 4, 6, 8 theories, we explicitly compute the flat directions of the black object potential corresponding to vanishing eigenvalues of its Hessian matrix. In the case N = 4, we study the relation to the (2, 0), d = 6 theory. We finally describe the embedding of the N = 2, d = 5 magic models in N = 8, d = 5 supergravity as well as the interconnection among the corresponding charge orbits.

References (80)

  1. S. Ferrara, R. Kallosh and A. Strominger, N = 2 Extremal Black Holes, Phys. Rev. D52, 5412 (1995), hep-th/9508072.
  2. A. Strominger, Macroscopic Entropy of N = 2 Extremal Black Holes, Phys. Lett. B383, 39 (1996), hep-th/9602111.
  3. S. Ferrara and R. Kallosh, Supersymmetry and Attractors, Phys. Rev. D54, 1514 (1996), hep-th/9602136.
  4. S. Ferrara and R. Kallosh, Universality of Supersymmetric Attractors, Phys. Rev. D54, 1525 (1996), hep-th/9603090.
  5. S. Ferrara, G. W. Gibbons and R. Kallosh, Black Holes and Critical Points in Moduli Space, Nucl. Phys. B500, 75 (1997), hep-th/9702103.
  6. A. Sen, Black Hole Entropy Function and the Attractor Mechanism in Higher Deriva- tive Gravity, JHEP 09, 038 (2005), hep-th/0506177.
  7. K. Goldstein, N. Iizuka, R. P. Jena and S. P. Trivedi, Non-Supersymmetric Attrac- tors, Phys. Rev. D72, 124021 (2005), hep-th/0507096.
  8. A. Sen, Entropy Function for Heterotic Black Holes, JHEP 03, 008 (2006), hep-th/0508042.
  9. R. Kallosh, New Attractors, JHEP 0512, 022 (2005), hep-th/0510024.
  10. P. K. Tripathy and S. P. Trivedi, Non-Supersymmetric Attractors in String Theory, JHEP 0603, 022 (2006), hep-th/0511117.
  11. A. Giryavets, New Attractors and Area Codes, JHEP 0603, 020 (2006), hep-th/0511215.
  12. K. Goldstein, R. P. Jena, G. Mandal and S. P. Trivedi, A C-Function for Non- Supersymmetric Attractors, JHEP 0602, 053 (2006), hep-th/0512138.
  13. M. Alishahiha and H. Ebrahim, Non-supersymmetric attractors and entropy func- tion, JHEP 0603, 003 (2006), hep-th/0601016.
  14. R. Kallosh, N. Sivanandam and M. Soroush, The Non-BPS Black Hole Attractor Equation, JHEP 0603, 060 (2006), hep-th/0602005.
  15. B. Chandrasekhar, S. Parvizi, A. Tavanfar and H. Yavartanoo, Non-supersymmetric attractors in R 2 gravities, JHEP 0608, 004 (2006), hep-th/0602022.
  16. J. P. Hsu, A. Maloney and A. Tomasiello, Black Hole Attractors and Pure Spinors, JHEP 0609, 048 (2006), hep-th/0602142.
  17. S. Bellucci, S. Ferrara and A. Marrani, On some properties of the Attractor Equa- tions, Phys. Lett. B635, 172 (2006), hep-th/0602161.
  18. S. Bellucci, S. Ferrara and A. Marrani, Supersymmetric Mechanics. Vol.2: The At- tractor Mechanism and Space-Time Singularities (LNP 701, Springer-Verlag, Hei- delberg, 2006).
  19. S. Ferrara and R. Kallosh, On N = 8 attractors, Phys. Rev. D 73, 125005 (2006), hep-th/0603247.
  20. M. Alishahiha and H. Ebrahim, New attractor, Entropy Function and Black Hole Partition Function, JHEP 0611, 017 (2006), hep-th/0605279.
  21. S. Bellucci, S. Ferrara, M. Günaydin and A. Marrani, Charge Orbits of Sym- metric Special Geometries and Attractors, Int. J. Mod. Phys. A21, 5043 (2006), hep-th/0606209.
  22. D. Astefanesei, K. Goldstein, R. P. Jena, A. Sen and S. P. Trivedi, Rotating Attrac- tors, JHEP 0610, 058 (2006), hep-th/0606244.
  23. R. Kallosh, N. Sivanandam and M. Soroush, Exact Attractive non-BPS STU Black Holes, Phys. Rev. D74, 065008 (2006), hep-th/0606263.
  24. P. Kaura and A. Misra, On the Existence of Non-Supersymmetric Black Hole Attrac- tors for Two-Parameter Calabi-Yau's and Attractor Equations, hep-th/0607132.
  25. G. L. Cardoso, V. Grass, D. Lüst and J. Perz, Extremal non-BPS Black Holes and Entropy Extremization, JHEP 0609, 078 (2006), hep-th/0607202.
  26. S. Bellucci, S. Ferrara, A. Marrani and A. Yeranyan, Mirror Fermat Calabi-Yau Threefolds and Landau-Ginzburg Black Hole Attractors, hep-th/0608091.
  27. G.L. Cardoso, B. de Wit and S. Mahapatra, Black hole entropy functions and at- tractor equations, hep-th/0612225.
  28. R. D'Auria, S. Ferrara and M. Trigiante, Critical points of the Black-Hole potential for homogeneous special geometries, hep-th/0701090.
  29. S. Bellucci, S. Ferrara and A. Marrani, Attractor Horizon Geometries of Extremal Black Holes, Contribution to the Proceedings of the XVII SIGRAV Conference,4-7 September 2006, Turin, Italy, hep-th/0702019.
  30. A. Ceresole and G. Dall'Agata, Flow Equations for Non-BPS Extremal Black Holes, JHEP 0703, 110 (2007), hep-th/0702088.
  31. L. Andrianopoli, R. D'Auria, S. Ferrara and M. Trigiante, Black Hole Attractors in N = 1 Supergravity, hep-th/0703178.
  32. K. Saraikin and C. Vafa, Non-supersymmetric Black Holes and Topological Strings, hep-th/0703214.
  33. S. Ferrara and A. Marrani, N = 8 non-BPS Attractors, Fixed Scalars and Magic Supergravities, Nucl. Phys. B 2007, in press, ArXiV:0705.3866.
  34. S. Nampuri, P. K. Tripathy and S. P. Trivedi, On The Stability of Non- Supersymmetric Attractors in String Theory, arXiv:0705.4554.
  35. L. Andrianopoli, R. D'Auria, E. Orazi, M. Trigiante, First Order Description of Black Holes in Moduli Space, arXiv:0706.0712.
  36. S. Ferrara and A. Marrani, On the Moduli Space of non-BPS Attractors for N = 2 Symmetric Manifolds, Phys. Lett. B 2007, in press, ArXiV:0706.1667.
  37. D.Astefanesei and H. Yavartanoo, Stationary black holes and attractor mechanism, arXiv:0706.1847.
  38. G. L. Cardoso, A. Ceresole, G. Dall'Agata, J. M. Oberreuter, J. Perz, First-order flow equations for extremal black holes in very special geometry, ArXiV:0706.3373.
  39. A. Misra and P. Shukla, 'Area codes', large volume (non-)perturbative alpha-prime and instanton: Corrected non-supersymmetric (A)dS minimum, the 'inverse prob- lem' and 'fake superpotentials' for multiple-singular-loci-two-parameter Calabi-Yau's, ArXiV:0707.0105.
  40. A. Ceresole, S. Ferrara and A. Marrani, 4d/5d Correspondence for the Black Hole Po- tential and its Critical Points, Class. Quant. Grav. 2007, in press, ArXiV:0707.0964.
  41. M. M. Anber and D. Kastor, The Attractor mechanism in Gauss-Bonnet gravity, arXiv:0707.1464.
  42. Y. S. Myung, Y.-W. Kim and Y.-J. Park, New attractor mechanism for spherically symmetric extremal black holes, arXiv:0707.1933.
  43. S. Bellucci, A. Marrani, E. Orazi and A. Shcherbakov, Attractors with Vanishing Central Charge, Phys. Lett. B 2007, in press, ArXiV:0707.2730.
  44. K. Hotta and T. Kubota, Exact Solutions and the Attractor Mechanism in Non-BPS Black Holes, arXiv:0707.4554.
  45. X. Gao, Non-supersymmetric Attractors in Born-Infeld Black Holes with a Cosmo- logical Constant, arXiv:0708.1226.
  46. S. Ferrara and A. Marrani, Black Hole Attractors in Extended Supergravity, to ap- pear in the proceedings of 13th International Symposium on Particles, Strings and Cosmology (PASCOS 07), London, England, 2-7 Jul 2007, arXiv:0708.1268.
  47. A. Sen, Black Hole Entropy Function, Attractors and Precision Counting of Mi- crostates, arXiv:0708.1270.
  48. A. Belhaj, L.B. Drissi, E.H. Saidi and A. Segui, N = 2 Supersymmetric Black At- tractors in Six and Seven Dimensions, arXiv:0709.0398.
  49. S. Ferrara and M. Günaydin, Orbits and attractors for N = 2 Maxwell-Einstein su- pergravity theories in five dimensions, Nucl. Phys. B759, 1 (2006), hep-th/0606108
  50. ⋄ S. Ferrara and M. Günaydin, Orbits of exceptional groups, duality and BPS states in string theory, Int. J. Mod. Phys. A13, 2075 (1998), hep-th/9708025.
  51. L. Andrianopoli, R. D'Auria, S. Ferrara and M.A. Lledò, Horizon geometry, duality and fixed scalars in six dimensions, Nucl. Phys. B528, 218 (1998), hep-th/9802147.
  52. L. Andrianopoli, S. Ferrara and M.A. Lledò, No-scale d= 5 supergravity from Scherk- Schwarz reduction of d= 6 theories, JHEP 0406, 018 (2004), hep-th/0406018.
  53. B. de Wit, F. Vanderseypen and A. Van Proeyen, Symmetry Structures of Special Geometries, Nucl. Phys. B400, 463 (1993), hep-th/9210068.
  54. G. W. Gibbons and P. Townsend, Vacuum Interpolation in Supergravity via Super p-Branes, Phys. Rev. Lett. 71, 3754 (1993), hep-th/9307049.
  55. F. Larsen, The Attractor Mechanism in Five Dimensions, to appear in the Proceed- ings of the Winter School on Attractor Mechanism 2006 (SAM2006 ), 20-24 March 2006, INFN-LNF, Frascati, Italy, hep-th/0608191.
  56. L. Andrianopoli, R. D'Auria and S. Ferrara, Five-dimensional U duality, black hole entropy and topological invariants, Phys. Lett. B411, 39 (1997), hep-th/9705024.
  57. L. Andrianopoli, R. D'Auria and S. Ferrara, U duality and central charges in various dimensions revisited, Int. J. Mod. Phys. A13, 431 (1998), hep-th/9612105.
  58. L. Andrianopoli, R. D'Auria and S. Ferrara, Central extension of extended supergrav- ities in diverse dimensions, Int. J. Mod. Phys. A12, 3759 (1997), hep-th/9608015.
  59. P.K. Townsend, P-brane democracy, in : PASCOS/Hopkins, 0271 (1995), hep-th/9507048.
  60. L. J. Romans, Selfduality For Interacting Fields: Covariant Field Equations For Six-Dimensional Chiral Supergravities, Nucl.Phys. B276, 71 (1986).
  61. A. Sagnotti, A Note on the Green-Schwarz mechanism in open string theories, Phys. Lett. B294, 196 (1992), hep-th/9210127 ⋄ A. Sagnotti, in : Non-Perturbative Quan- tum Field Theory, eds. G. Mack et al. (Pergamon Press, Oxford, 1988), p.521 ⋄ M. Bianchi and A. Sagnotti, On the systematics of open string theories, Phys. Lett. B247, 517 (1990) ⋄ M. Bianchi and A. Sagnotti, Twist symmetry and open string Wilson lines, Nucl. Phys. B361, 519 (1991).
  62. M. Günaydin, G. Sierra and P. K. Townsend, Exceptional Supergravity Theories and the Magic Square, Phys. Lett. B133, 72 (1983) ⋄ M. Günaydin, G. Sierra and P. K. Townsend, The Geometry of N = 2 Maxwell-Einstein Supergravity and Jordan Alge- bras, Nucl. Phys. B242, 244 (1984) ⋄ M. Günaydin, G. Sierra and P. K. Townsend, Gauging the d = 5 Maxwell-Einstein Supergravity Theories: More on Jordan Alge- bras, Nucl. Phys. B253, 573 (1985) ⋄ M. Günaydin, G. Sierra and P. K. Townsend, More on d = 5 Maxwell-Einstein Supergravity: Symmetric Space and Kinks, Class. Quant. Grav. 3, 763 (1986).
  63. S. Ferrara, R. Minasian and A. Sagnotti, Low-energy analysis of M and F theories on Calabi-Yau threefolds, Nucl. Phys. B474, 323 (1996), hep-th/9604097.
  64. N. Seiberg and E. Witten, Comments on string dynamics in six-dimensions, Nucl. Phys. B471, 121 (1996), hep-th/9603003.
  65. S. Ferrara and J. M. Maldacena, Branes, central charges and U -duality invariant BPS conditions, Class. Quant. Grav. 15, 749 (1998), hep-th/9706097.
  66. S. Helgason, Differential Geometry, Lie Groups and Symmetric Spaces, American Mathematical Society, 2001.
  67. R. Gilmore, Lie Groups, Lie Algebras, and Some of Their Applications (Dover Pub- lications, 2006).
  68. H. Lu, C.N. Pope and K.S. Stelle, Multiplet structures of BPS solitons, Class. Quant. Grav. 15, 537 (1998), hep-th/9708109.
  69. A. Salam and E. Sezgin, Anomaly freedom in chiral supergravities, Phys. Scripta 32, 283 (1985).
  70. S. Randjbar-Daemi, A. Salam, E. Sezgin and J. Strathdee, An anomaly free model in six-dimensions, Phys. Lett. B151, 351 (1985).
  71. S. Ferrara, F. Riccioni and A. Sagnotti, Tensor and vector multiplets in six- dimensional supergravity, Nucl. Phys. B519, 115 (1998), hep-th/9711059.
  72. F. Riccioni and A. Sagnotti, Consistent and covariant anomalies in six-dimensional supergravity, Phys. Lett. B436, 298 (1998), hep-th/9806129.
  73. H. Nishino and E. Sezgin, New couplings of six-dimensional supergravity, Nucl. Phys. B505, 497 (1997), hep-th/9703075.
  74. B. de Wit and A. Van Proeyen, Special geometry, cubic polynomials and homogeneous quaternionic spaces, Commun. Math. Phys. 149, 307 (1992), hep-th/9112027.
  75. S. Cecotti , S. Ferrara and L. Girardello, Geometry of Type II Superstrings and the Moduli of Superconformal Field Theories, Int. J. Mod. Phys. A4, 2475 (1989).
  76. M. B. Green, J. H. Schwarz and P. C. West, Anomaly Free Chiral Theories in Six- Dimensions, Nucl. Phys. B254, 327 (1985). Also in : J. H. Schwarz (ed.), Super- strings, Vol. 2, 1085; and in : A. Salam and E. Sezgin (eds.), Supergravities in diverse dimensions, Vol. 2, 1161.
  77. C. Angelantonj and A. Sagnotti, Open strings, Phys. Rept. 371, 1 (2002), [Erratum- ibid. 376, 339 (2003)], hep-th/0204089.
  78. I. Antoniadis, H. Partouche and T. R. Taylor, Lectures on heterotic-type I duality, Nucl. Phys. Proc. Suppl. 61A, 58 (1998);
  79. Nucl. Phys. Proc. Suppl. 67, 3 (1998), hep-th/9706211.
  80. R. Slansky, Group Theory For Unified Model Building, Phys. Rept. 79 (1981) 1.