Non-BPS Black Branes in M-theory over Calabi-Yau Threefolds
2022
https://doi.org/10.48550/ARXIV.2202.06872Abstract
We study extremal solutions arising in M-theory compactifications on Calabi-Yau threefolds, focussing on non-BPS attractors for their importance in relation to the Weak Gravity Conjecture (WGC); M2 branes wrapped on two-cycles give rise to black holes, whereas M5 branes wrapped on four-cycles result in black strings. In the low-energy/field theory limit one obtains minimal N = 2, D = 5 supergravity coupled to Abelian vector multiplets. By making use of the effective black hole potential formalism with Lagrange multipliers and of the Attractor Mechanism, we obtain the explicit expressions of the attractor moduli for BPS and non-BPS solutions, and we compute the Bekenstein-Hawking black hole entropy and the black string tension. Furthermore, by focussing on two-moduli complete intersection (CICY) or toric hypersurface (THCY) Calabi-Yau threefolds, we investigate the possible non-uniqueness of the attractor solutions, as well as the stability of non-BPS black holes and black strings (restricting to doubly-extremal solutions, for simplicity's sake). In all models taken into consideration, we find that both BPS and non-BPS extremal black hole attractors are always unique for a given, supporting electric charge configuration; moreover, non-BPS black holes are always unstable, and thus they decay into constituent BPS/anti-BPS pairs : this confirms the WCG, for which macroscopic non-supersymmetric solutions are bound to decay. For what concerns extremal black strings, it is well known they are unique in the BPS case; we confirm uniqueness also for non-BPS strings in two-moduli CICY models. On the other hand, we discover multiple non-BPS extremal black string attractors (with different tensions) in most of the two-moduli THCY models, and we determine the corresponding magnetic configurations supporting them; this indicates the existence of volume-minimizing representatives in the same homology class having different values of their local minimal volume. Moreover, we find that non-BPS (doubly-)extremal black strings, both for single and multiple solutions, are stable and thus enjoy recombination of their constituent BPS/anti-BPS pairs; in Calabi-Yau geometry, this means that the volume of the representative corresponding to the black string is less than the volume of the minimal piecewise-holomorphic representative, predicting recombination for those homology classes and thus leading to stable, non-BPS string solutions, which for the WGC are microscopic with small charges.
References (31)
- A. Strominger, C. Vafa, Microscopic origin of the Bekenstein-Hawking entropy, Phys. Lett. B379, 99-104 (1996), hep-th/9601029.
- N. Arkani-Hamed, L. Motl, A. Nicolis, C. Vafa, The String landscape, black holes and gravity as the weakest force, JHEP 06, 060 (2007), hep-th/0601001.
- H. Ooguri, C. Vafa, On the Geometry of the String Landscape and the Swampland, Nucl. Phys. B766, 21-33 (2007), hep-th/0605264.
- C. Vafa, The String landscape and the swampland, hep-th/0509212.
- S. Ferrara, R. Kallosh, A. Strominger, N = 2 extremal black holes, Phys. Rev. D52, R5412-R5416 (1995), hep-th/9508072.
- S. Ferrara, R. Kallosh, Supersymmetry and attractors, Phys. Rev. D54, 1514-1524 (1996), hep-th/9602136.
- S. Ferrara, R. Kallosh, Universality of supersymmetric attractors, Phys. Rev. D54, 1525-1534 (1996), hep-th/9603090.
- S. Ferrara, G. W. Gibbons, R. Kallosh, Black holes and critical points in moduli space, Nucl. Phys. B500, 75-93 (1997), hep-th/9702103.
- R. Kallosh, A. D. Linde, M. Shmakova, Supersymmetric multiple basin attractors, JHEP 11, 010 (1999), hep-th/9910021.
- K. Goldstein, N. Iizuka, R. P. Jena, S. P. Trivedi, Supersymmetric multiple basin attractors, Phys. Rev. D72, 124021 (2005), hep-th/0507096.
- C. Long, A. Sheshmani, C. Vafa, S.-T. Yau, Non-Holomorphic Cycles and Non-BPS Black Branes, arXiv:2104.06420 [hep-th].
- P. Candelas, A. M. Dale, C. A. Lutken, R. Schimmrigk, Complete Intersection Calabi-Yau Manifolds, Nucl. Phys. B298, 493 (1988).
- M. Kreuzer, H. Skarke, Complete classification of reflexive polyhedra in four dimensions, Adv. Theor. Math. Phys. 4, 1209-1230 (2002), hep-th/0002240.
- C. R. Brodie, A. Constantin, A. Lukas, F. Ruehle, Geodesics in the extended Kähler cone of Calabi-Yau threefolds, arXiv: 2108.10323 [hep-th].
- A. C. Cadavid, A. Ceresole, R. D'Auria, S. Ferrara, Eleven-dimensional supergravity compactified on Calabi-Yau threefolds, Phys. Lett. B357, 76-80 (1995), hep-th/9506144.
- S. Ferrara, R. R. Khuri, R. Minasian, M theory on a Calabi-Yau manifold, Phys. Lett. B375, 81-88 (1996), hep-th/9602102.
- M. Günaydin, G. Sierra, P. K. Townsend, Gauging the d = 5 Maxwell-Einstein Supergravity Theories: More on Jordan Algebras, Nucl. Phys. B253, 573 (1985).
- B. de Wit, A. Van Proeyen, Broken sigma model isometries in very special geometry, Phys. Lett. B293, 94-99 (1992), hep-th/9207091.
- A. S. Chou, R. Kallosh, J. Rahmfeld, S. J. Rey, M. Shmakova, W. K. Wong, Critical points and phase transitions in 5-D compactifications of M theory, Nucl. Phys. B508, 147-180 (1997), hep-th/9704142.
- M. Günaydin, G. Sierra, P.K. Townsend, The Geometry of N = 2 Maxwell-Einstein Supergravity and Jordan Algebras, Nucl. Phys. B242 (1984) 244-268.
- A. H. Chamseddine, S. Ferrara, G. W. Gibbons, R. Kallosh, Enhancement of supersymmetry near 5-d black hole horizon, Phys. Rev. D55, 3647-3653 (1997), hep-th/9610155.
- B. L. Cerchiai, S. Ferrara, A. Marrani, B. Zumino, Charge Orbits of Extremal Black Holes in Five Dimensional Supergravity, Phys. Rev. D82 (2010) 085010, arXiv:1006.3101 [hep-th].
- S. Ferrara, M. Günaydin, Orbits and Attractors for N = 2 Maxwell-Einstein Supergravity Theories in Five Dimensions, Nucl. Phys. B759 (2006) 1-19, hep-th/0606108.
- L. Borsten, D. Dahanayake, M.J. Duff, W. Rubens, Black holes admitting a Freudenthal dual, Phys. Rev. D80 (2009) 026003, arXiv: 0903.5517 [hep-th].
- S. Hosono, A. Klemm, S. Theisen, S. T. Yau, Mirror symmetry, mirror map and applications to Calabi- Yau hypersurfaces, Commun. Math. Phys. 167, 301-350 (1995), hep-th/9308122.
- R. Altman, J. Gray, Y. H. He, V. Jejjala, B. D. Nelson, A Calabi-Yau Database: Threefolds Constructed from the Kreuzer-Skarke List, JHEP 02, 158 (2015), arXiv:1411.1418 [hep-th].
- M. Alim, B. Heidenreich, T. Rudelius, The Weak Gravity Conjecture and BPS Particles, Fortsch. Phys. 69 (2021) 11-12, 2100125, arXiv: 2108.08309 [hep-th].
- F. Carta, A. Mininno, P. Shukla, Systematics of perturbatively flat flux vacua, arXiv: 2112.13863 [hep-th].
- Y.-C. Jing, X. Li, F.-Z. Yang, The Number of Rational Points of Two Parameter Calabi-Yau manifolds as Toric Hypersurfaces, arXiv:2201.12747 [hep-th].
- P. Dominic, T. Mandal, P. K. Tripathy, Multiple Single-Centered Attractors, JHEP 12 (2014) 158, arXiv:1406.7147 [hep-th].
- P. K. Tripathy, New branches of non-supersymmetric attractors in N = 2 supergravity, Phys. Lett. B770 (2017) 182-185, arXiv: 1701.00368 [hep-th].