Academia.eduAcademia.edu

Outline

On the roots of $\sigma$-polynomials

2013, arXiv (Cornell University)

Abstract

Given a graph G of order n, the σ-polynomial of G is the generating function σ(G, x) = a i x i where a i is the number of partitions of the vertex set of G into i nonempty independent sets. Such polynomials arise in a natural way from chromatic polynomials. Brenti [1] proved that σ-polynomials of graphs with chromatic number at least n − 2 had all real roots, and conjectured the same held for chromatic number n − 3. We affirm this conjecture.

References (20)

  1. F. Brenti, Expansions of chromatic polynomials and log-concavity, Trans. Amer. Math. Soc. 332 (1992) 729-756.
  2. F. Brenti, G.F. Royle, D.G. Wagner, Location of zeros of chromatic and related poly- nomials of graphs, Canad. J. Math. 46 (1994) 55-80.
  3. J.I. Brown, A. Erey, The largest real part of complex chromatic roots, preprint.
  4. J.I. Brown, C.A. Hickman, On chromatic roots with negative real part, Ars Combin. 63 (2002) 211-221.
  5. J.I. Brown, Discrete Structures and Their Applications, CRC Press, Boca Raton, 2013.
  6. M. Chudnovsky, P. Seymour, The roots of the independence polynomial of a clawfree graph, J. Combin. Theory Ser. B 97 (2007) 350-357.
  7. V. Chvátal, A note on coefficients of chromatic polynomials, J. Combin. Theory 9 (1970) 95-96.
  8. L. Comtet, Advanced Combinatorics, Reidel Pub. Co., Boston, 1974.
  9. B. Duncan,d R. Peele, Bell and Stirling Numbers for Graphs, J. Integer Seq. 12 (2009), article 09.7.1.
  10. D. Galvin and D.T. Thanh, Stirling numbers of forests and cycles, Electron. J. Combin 20(1) (2013) P73.
  11. J. Goldman, J. Joichi, D. White, Rook Theory III. Rook polynomials and the Chromatic structure of graphs, J. Combin. Theory Ser. B 25 (1978) 135-142.
  12. O.J. Heilmann, E.H. Lieb, Theory of monomer-dimer systems, Comm. Math. Phys. 25 (1972) 190-232.
  13. R. R. Korfhage, σ-polynomials and graph coloring, J. Combin. Theory Ser. B 24 (1978) 137-153.
  14. N.Z. Li, On graphs having σ-polynomials of the same degree, Discrete Math. 110 (1992) 185-196.
  15. H. Ma, H. Ren, σ-polynomials, Discrete Math. 285 (2004) 341-344.
  16. R.C. Read, An introduction to chromatic polynomials, J. Combin. Theory 4 (1968) 52-71.
  17. R.C. Read, R.J. Wilson, An Atlas of Graphs, Oxford University Press, Oxford, 1998.
  18. D.G. Wagner, The partition polynomial of a finite set system, J. Combin. Theory Ser. A 56 (1991) 138-159.
  19. D.B. West, Introduction to Graph Theory, second ed., Prentice Hall, New York, 2001.
  20. H. Zhao, X. Li , S. Zhang, R. Liu, On the minimum real roots of the σ-polynomials and chromatic uniqueness of graphs, Discrete Math. 281 (2004) 277-294.