On the roots of $\sigma$-polynomials
2013, arXiv (Cornell University)
Abstract
Given a graph G of order n, the σ-polynomial of G is the generating function σ(G, x) = a i x i where a i is the number of partitions of the vertex set of G into i nonempty independent sets. Such polynomials arise in a natural way from chromatic polynomials. Brenti [1] proved that σ-polynomials of graphs with chromatic number at least n − 2 had all real roots, and conjectured the same held for chromatic number n − 3. We affirm this conjecture.
References (20)
- F. Brenti, Expansions of chromatic polynomials and log-concavity, Trans. Amer. Math. Soc. 332 (1992) 729-756.
- F. Brenti, G.F. Royle, D.G. Wagner, Location of zeros of chromatic and related poly- nomials of graphs, Canad. J. Math. 46 (1994) 55-80.
- J.I. Brown, A. Erey, The largest real part of complex chromatic roots, preprint.
- J.I. Brown, C.A. Hickman, On chromatic roots with negative real part, Ars Combin. 63 (2002) 211-221.
- J.I. Brown, Discrete Structures and Their Applications, CRC Press, Boca Raton, 2013.
- M. Chudnovsky, P. Seymour, The roots of the independence polynomial of a clawfree graph, J. Combin. Theory Ser. B 97 (2007) 350-357.
- V. Chvátal, A note on coefficients of chromatic polynomials, J. Combin. Theory 9 (1970) 95-96.
- L. Comtet, Advanced Combinatorics, Reidel Pub. Co., Boston, 1974.
- B. Duncan,d R. Peele, Bell and Stirling Numbers for Graphs, J. Integer Seq. 12 (2009), article 09.7.1.
- D. Galvin and D.T. Thanh, Stirling numbers of forests and cycles, Electron. J. Combin 20(1) (2013) P73.
- J. Goldman, J. Joichi, D. White, Rook Theory III. Rook polynomials and the Chromatic structure of graphs, J. Combin. Theory Ser. B 25 (1978) 135-142.
- O.J. Heilmann, E.H. Lieb, Theory of monomer-dimer systems, Comm. Math. Phys. 25 (1972) 190-232.
- R. R. Korfhage, σ-polynomials and graph coloring, J. Combin. Theory Ser. B 24 (1978) 137-153.
- N.Z. Li, On graphs having σ-polynomials of the same degree, Discrete Math. 110 (1992) 185-196.
- H. Ma, H. Ren, σ-polynomials, Discrete Math. 285 (2004) 341-344.
- R.C. Read, An introduction to chromatic polynomials, J. Combin. Theory 4 (1968) 52-71.
- R.C. Read, R.J. Wilson, An Atlas of Graphs, Oxford University Press, Oxford, 1998.
- D.G. Wagner, The partition polynomial of a finite set system, J. Combin. Theory Ser. A 56 (1991) 138-159.
- D.B. West, Introduction to Graph Theory, second ed., Prentice Hall, New York, 2001.
- H. Zhao, X. Li , S. Zhang, R. Liu, On the minimum real roots of the σ-polynomials and chromatic uniqueness of graphs, Discrete Math. 281 (2004) 277-294.