Abstract
AI
AI
This research explores chromatic polynomials and the chromaticity of graphs, addressing their historical significance and development in tackling problems such as the four-colour theorem. Key topics include an interpretation of coefficients, various properties of chromatic polynomials, and chromatic equivalence, with an emphasis on understanding the uniqueness of chromatic polynomials across different graphs. The paper aims to contribute to ongoing research in graph theory by analyzing these polynomials and their implications.
References (65)
- 4 Disconnected χ-unique graphs . . . . . . . . . . . . . . . . . 65
- 5 One-connected χ-unique graphs . . . . . . . . . . . . . . . . 66
- 6 χ-unique graphs with connectivity 2 . . . . . . . . . . . . . 68
- 7 A chromatically equivalence class . . . . . . . . . . . . . . . 71
- 8 Further results . . . . . . . . . . . . . . . . . . . . . . . . . 73 3.8.1 A K 3 -gluing of graphs . . . . . . . . . . . . . . . . . 73 3.8.2 Polygon-trees and related structures . . . . . . . . . 75 3.8.3 2-connected (n, n + k)-graphs with small k . . . . . 76
- Exercise 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
- 4 Chromaticity of Multi-partite Graphs 83
- 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
- 2 Complete bipartite graphs . . . . . . . . . . . . . . . . . . . 84
- 3 Complete tripartite graphs . . . . . . . . . . . . . . . . . . . 86
- 4 Complete multi-partite graphs . . . . . . . . . . . . . . . . 90
- 5 Complete bipartite graphs with some edges deleted . . . . . 94
- 6 Further results . . . . . . . . . . . . . . . . . . . . . . . . . 99
- Exercise 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
- 5 Chromaticity of Subdivisions of Graphs 105
- 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
- 2 Multi-bridge graphs . . . . . . . . . . . . . . . . . . . . . . 106 5.2.1 Chromatic polynomials of multi-bridge graphs . . . 106
- 2.2 Generalized polygon-trees . . . . . . . . . . . . . . . 109 5.2.3 Chromaticity of k-bridge graphs with k = 4, 5, 6 . . . 111 5.2.4 Chromaticity of general multi-bridge graphs . . . . . 112
- 3 Chromaticity of generalized polygon-trees . . . . . . . . . . 114
- 4 K 4 -homeomorphs . . . . . . . . . . . . . . . . . . . . . . . . 118
- 5 Chromaticity of uniform subdivisions of graphs . . . . . . . 123
- 6 Further results . . . . . . . . . . . . . . . . . . . . . . . . . 127
- Exercise 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
- 6 Graphs in Which any Two Colour Classes Induce a Tree (I) 133
- 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
- 2 The sizes and triangle numbers of graphs in T r . . . . . . . 135
- 3 Graphs in T r . . . . . . . . . . . . . . . . . . . . . . . . . . 139
- 4 Chordal graphs . . . . . . . . . . . . . . . . . . . . . . . . . 141
- 5 q-trees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144 Contents XI Exercise 6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
- 7 Graphs in Which any Two Colour Classes Induce a Tree (II) 149
- 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
- 2 The number s 3 (H) . . . . . . . . . . . . . . . . . . . . . . . 151
- 3 The family T 3,1 . . . . . . . . . . . . . . . . . . . . . . . . . 153
- 4 The structure of graphs in T r,1 (r ≥ 4) . . . . . . . . . . . . 156
- 5 Chromatically unique graphs in T r,1 . . . . . . . . . . . . . 161
- 6 Further results . . . . . . . . . . . . . . . . . . . . . . . . . 164
- Exercise 7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167
- 8 Graphs in Which All but One Pair of Colour Classes Induce Trees (I) 169
- 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 169
- 2 The triangle number and an upper bound . . . . . . . . . . 170
- 3 Graphs in F r having maximum triangle numbers . . . . . . 172
- 4 A more general result . . . . . . . . . . . . . . . . . . . . . 177
- Exercise 8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178
- 9 Graphs in Which All but One Pair of Colour Classes Induce Trees (II)
- 9.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 179
- 2 Classification of graphs satisfying (CT) . . . . . . . . . . . 180
- 3 Graphs in CT . . . . . . . . . . . . . . . . . . . . . . . . . . 184
- 4 Graphs containing exactly one pure cycle . . . . . . . . . . 185
- 5 The main results . . . . . . . . . . . . . . . . . . . . . . . . 188
- 6 Further results . . . . . . . . . . . . . . . . . . . . . . . . . 190
- Exercise 9 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193
- 10 Chromaticity of Extremal 3-colourable Graphs 195 10.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 195 10.2 3-colourable graphs . . . . . . . . . . . . . . . . . . . . . . . 197
- 3 A family of 3-colourable graphs . . . . . . . . . . . . . . . . 200 10.4 Chromaticity of graphs in X k . . . . . . . . . . . . . . . . . 207 Exercise 10 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213 XII Contents 11 Polynomials Related to Chromatic Polynomials 215 11.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 215 11.2 Basic properties of adjoint polynomials . . . . . . . . . . . . 217 11.3 Reduction formulas for adjoint polynomials . . . . . . . . . 220 11.4 Roots of adjoint polynomials . . . . . . . . . . . . . . . . . 222 11.5 Invariants for adjointly equivalent graphs . . . . . . . . . . 226 11.5.1 Definitions . . . . . . . . . . . . . . . . . . . . . . . 226 11.5.2 The adj-invariant R 1 (G) . . . . . . . . . . . . . . . . 227 11.5.3 The adj-invariant R 2 (G) . . . . . . . . . . . . . . . . 231
- 6 Adjointly equivalent graphs . . . . . . . . . . . . . . . . . . 233 11.7 Further results . . . . . . . . . . . . . . . . . . . . . . . . . 241 Exercise 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 246 12 Real Roots of Chromatic Polynomials 249 12.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 249 12.
- Root-free intervals for all chromatic polynomials . . . . . . 250 12.3 Real numbers which are not chromatic roots . . . . . . . . . 256 12.4 Upper root-free intervals . . . . . . . . . . . . . . . . . . . . 256 12.5 Planar graphs . . . . . . . . . . . . . . . . . . . . . . . . . . 258 12.
- Near-triangulations . . . . . . . . . . . . . . . . . . . . . . . 260 12.7 Graphs with hamiltonian paths . . . . . . . . . . . . . . . . 263 12.8 Bipartite graphs . . . . . . . . . . . . . . . . . . . . . . . . 264 12.
- 9 Graphs containing spanning q-trees . . . . . . . . . . . . . . 266 12.10Largest non-integral chromatic root . . . . . . . . . . . . . . 267 12.11Upper root-free intervals with respect to maximum degrees 269 Exercise 12 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 272 13 Integral Roots of Chromatic Polynomials 273 13.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 273 13.2 Chromatic polynomials possessed only by chordal graphs . . 275 13.
- Graphs G ∈ I of order ω(G) + 2 . . . . . . . . . . . . . . . 277 13.
- Dmitriev's Problem . . . . . . . . . . . . . . . . . . . . . . . 282 Exercise 13 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 286 14 Complex Roots of Chromatic Polynomials 289
- 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 289
- 2 Location of chromatic roots . . . . . . . . . . . . . . . . . . 290 14.3 Chromatic roots within |z| ≤ 8∆ . . . . . . . . . . . . . . . 293
- 4 Subdivisions . . . . . . . . . . . . . . . . . . . . . . . . . . . 295
- 5 Chromatic roots in the whole plane . . . . . . . . . . . . . . 297
- 6 Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 298 14.
- Potts Model . . . . . . . . . . . . . . . . . . . . . . . . . . . 299 Exercise 14 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 307 15 Inequalities on Chromatic Polynomials 309 15.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 309 15.2 Bounds of chromatic polynomials . . . . . . . . . . . . . . . 310 15.3 Maximum chromatic polynomials . . . . . . . . . . . . . . . 313 15.4 An open problem . . . . . . . . . . . . . . . . . . . . . . . . 318 15.5 Mean colour numbers . . . . . . . . . . . . . . . . . . . . . 321 Exercise 15 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 326