Academia.eduAcademia.edu

Outline

Polynomials related to chromatic polynomials

2020, arXiv (Cornell University)

References (63)

  1. F. Brenti, Expansions of chromatic polynomials and log-concavity, Trans. Amer. Math. Soc. 332 (1992), 729-756.
  2. F. Brenti, G Royle and D. Wagner, location of zeros of chromatic and related polynomials of graphs, Canad. J. Math. 46 (1994), 55-80.
  3. T. Brylawski and J. Oxley, The Tutte Polynomial and its Applications. In: White, N. (ed) Matroid Applications, Encyclopedia of Mathematics and its Applications. Cambridge University Press, Cambridge, 1992.
  4. R. D. Cameron, C. J. Colbourn, R. C. Read and N. C. Wormald, Cat- aloguing the graphs on 10 vertices, J. Graph Theory 9 (1985), 551-562.
  5. L. E. Chávez-Lomelí, C. Merino, S. D. Noble and M. Ramírez-Ibáñez, Some inequalities for the Tutte polynomial, European J. of Combin. 32 (2011), 422-433.
  6. Fengming Dong, On graphs having no flow zeros in (1,2), Electron. J. Combin. 22 (2015), Paper #P1.82.
  7. Fengming Dong, On zero-free intervals of flow polynomials, J. Combin. Theory Ser. B 111 (2015) 181-200.
  8. Fengming Dong, On graphs whose flow polynomials have real roots only, Electron. J. Combin. 25(3) (2018), #P3.26.
  9. Fengming Dong, A survey on real zeros of flow polynomials, J. Graph Theory 92 (2019), 361-376.
  10. Fengming Dong, New expressions for order polynomials and chromatic polynomials, J. Graph Theory 94 (2020), 30-58.
  11. F.M. Dong, K.L. Teo, C.H.C. Little and M.D. Hendy, Zeros of adjoint polynomials of paths and cycles, Australasian J. Combin. 25 (2002) 167-174.
  12. G. Farr, A correlation inequality involving stable set and chromatic poly- nomials, J. Combin. Theory Ser. B 58 (1993), 14-21.
  13. R. Fernández and A. Procacci, Cluster expansion for abstract polymer models: New bounds from an old approach, Comm. Math. Phys. 274 (2007), 123-140.
  14. A. J. Goodall1, A. Mier and S. D. Noble, The Tutte polynomial char- acterizes simple outerplanar graphs, Electronic Note on Discrete Math. 38 (2011), 639-644.
  15. A. J. Goodall, C. Merino, A. Mier, and M. Noy, On the evaluation of the Tutte polynomial at the points (1, -1) and (2, -1), Ann. Combin. 12 (2009), 479-492.
  16. I. Gutman and F. Harary, Generalizations of the matching polynomial, Utilitas Mathematica 24 (1983), 97-106.
  17. G. Haggard, D.J. Pearce and G.F. Royle, Computing Tutte polynomials, ACM Trans. Math. Software 37 (2010), article 24.
  18. T. Helgason. Aspects of the theory of hypermatroids, pages 191-213. Lec- ture Notes in Mathematics 411. Springer, Berlin, 1974.
  19. B. Jackson, An inequality for Tutte polynomials, Combinatorica 30 (2010), 69-81. http://dx.doi.org/10.1007/s00493-0102484-4.
  20. B. Jackson, A zero-free interval for flow polynomials of near-cubic graphs, Combin. Probab. Comput. 16 (2007) 85-108.
  21. B. Jackson, Zeros of chromatic and flow polynomials of graphs, J. Geom. 76 (2003), 95-109.
  22. B. Jackson and A. Sokal, Zero-free regions for multivariate Tutte poly- nomials (alias Potts-model partition functions) of graphs and matroids, J. Combin. Theory Ser. B 99 (2009), 869-903.
  23. J. L. Jacobsen and J. Salas, Is the five-flow conjecture almost false? J. Combin. Theory Ser. B 103 (2013), 532-565.
  24. F. Jaeger, Nowhere-zero flow problems, in: L.W. Beineke, R.J. Wilson (Eds.), Selected Topics in Graph Theory, vol. 3, Academic Press, 1988, 71-95.
  25. W. Kook, V. Reiner, D. Stanton, A Convolution Formula for the Tutte Polynomial, J. Combin. Theory Ser. B 76 (1999), 297-300.
  26. J.P.S. Kung, a multiplicity identity for characteristic polynomial of a matroid, Advance in Applied Math. 32 (2004), 319-326.
  27. J.P.S. Kung and G. Royle, Graphs whose flow polynomials have only integral roots, European J. of Combin. 32 (2011), 831-840.
  28. R.Y. Liu, A new method to find chromatic polynomial of graphs and its applications, Kexue Tongbao 32 (1987), 1508-1509 (In Chinese, English summary).
  29. P. Martin, Remarkable valuation of the dichromatic polynomial of planar multigraphs, J. Combin. Theory Ser. B 24 (1978), 318-324.
  30. P. Martin, Enumérations eulériennes dans le multigraphs et invariants de Tutte-Gröthendieck. PhD Thesis, Grenoble, 1977.
  31. C. Merino, The number of 0-1-2 increasing trees as two different evalua- tions of the Tutte polynomial of a complete graph, Electron. J. Combin. 15 (2008) # N28.
  32. C. Merino, M. Ibañez and M. G. Rodríguez, A note on some inequalities for the Tutte polynomial of a matroid, Electronic Note on Discrete Math. 34 (2009), 603-607.
  33. C. Merino and D.J.A. Welsh, Forests, colourings and acyclic orientations of the square lattice, Ann. Combin. 3 (1999), 417-429.
  34. S. D. Noble and G. F. Royle, The Merino-Welsh conjecture holds for series-parallel graphs, European J. of Combin. 38 (2014) 24-35.
  35. J.G. Oxley, Colouring, packing and the critical problem, Quart. J. Math. Oxford 29 (1978), 11-22.
  36. R.B. Potts, Some generalized order-disorder transformations, Proc. Cambridge Philos. Soc. 48 (1952), 106-109.
  37. R.C. Read and P. Rosenstiehl, On the principal edge tripartition of a graph, Ann. Discrete Math. 3 (1978), 195-226.
  38. G. C. Rota, On the foundations of combinatorial theory I. Theory of Möbius functions, Zeitschrift für Wahrscheinlichkeitstheorie und ver- wandte Gebiete 2 (1964), 340-368.
  39. A. D. Sokal, The multivariate Tutte polynomial (alias Potts model) for graphs and matroids, Surveys in combinatorics 2005 (B. Webb, ed.), London Math. Soc. Lecture Note Ser., vol. 327, Cambridge University Press, 2005.
  40. A.D. Sokal, Chromatic roots are dense in the whole complex plane, Combin. Probab. Comput. 13 (2004), 221-261.
  41. A. D. Sokal, Bounds on the Complex Zeros of (Di)Chromatic Polynomi- als and Potts-Model Partition Functions, Combin. Probab. Comput. 10 (2001), 41-77.
  42. Polynomials related to chromatic polynomials (Sect. 9)
  43. R. Stanley, Acyclic orientations of graphs, Discrete Math. 306 (2006), 905-909. (A new version of [43])
  44. R. Stanley, Acyclic orientations of graphs, Discrete Math. 5 (1973), 171- 178.
  45. R. Stanley, A Brylawski decomposition for finite ordered sets, Discrete Math. 4 (1973), 77-82.
  46. R. Stanley, A chromatic-like polynomial for ordered sets, in: Proc. sec- ond Chapel Hill conference on combinatorial mathematics and its appli- cations (1970), 421-427.
  47. C. Thomassen, The weak 3-flow conjecture and the weak circular flow conjecture, J. Combin. Theory Ser. B 102 (2012), 521-529.
  48. C. Thomassen, Spanning trees and orientations of graphs, J. Combin. 1 (2010), 101-111.
  49. W.T. Tutte, Graph Theory, Addison-Welsey, Reading, Mass., 1984.
  50. W. T. Tutte, Codichromatic Graphs, J. Combin. Theory Ser. B 16 (1974), 168-174.
  51. W.T. Tutte, On dichromatic polynomials, J. Combin. Theory 2 (1967), 301-320.
  52. W.T. Tutte, On the Algebraic Theory of Graph Colorings, J. Combin. Theory 1 (1966), 15-50.
  53. W.T. Tutte, A contribution to the theory of chromatic polynomials, Canad. J. Math. 6 (1954), 80-91.
  54. W.T. Tutte, On the imbedding of linear graphs in surfaces, Proc. Lond. Math. Soc. 51 (1950), 474-483.
  55. W.T. Tutte, A ring in graph theory, Proc. Cambridge Phil. Soc. 43 (1947), 26-40.
  56. M. L. Vergnas, On the evaluation at (3,3) of the Tutte polynomial of a graph, J. Combin. Theory Ser. B 44 (1988), 367-372.
  57. A. Vinué, Graphs and matroids determined by their Tutte polynomi- als, Ph.D. Thesis, Departament de Matemàtica Aplicada II, Universitat Politècnica de Catalunya, Barcelona, 2003.
  58. D. Wagner, The partition polynomial of a finite set system, J. Combin. Theory Ser. A 56 (1991), 138-159.
  59. C. D. Wakelin, Chromatic Polynomials, Ph.D. Thesis, University of Not- tingham, 1994.
  60. D.J.A. Welsh, http://garden.irmacs.sfu.ca/?q=category/welsh, also cited in Ref. ([17], Conjecture 1)and in Ref. ([21], Conjecture 33).
  61. H. Whitney, 2-isomorphic graphs, American J. of Mathematics 55 (1933), 245-254.
  62. F.Y. Wu, Potts model of magnetism (invited), J. Appl. Phys. 55 (1984), 2421-2425.
  63. F.Y. Wu, The Potts model, Rev. Mod. Phys. 54 (1982), 235-268. Erra- tum 55 (1983) 315.