Polynomials related to chromatic polynomials
2020, arXiv (Cornell University)
References (63)
- F. Brenti, Expansions of chromatic polynomials and log-concavity, Trans. Amer. Math. Soc. 332 (1992), 729-756.
- F. Brenti, G Royle and D. Wagner, location of zeros of chromatic and related polynomials of graphs, Canad. J. Math. 46 (1994), 55-80.
- T. Brylawski and J. Oxley, The Tutte Polynomial and its Applications. In: White, N. (ed) Matroid Applications, Encyclopedia of Mathematics and its Applications. Cambridge University Press, Cambridge, 1992.
- R. D. Cameron, C. J. Colbourn, R. C. Read and N. C. Wormald, Cat- aloguing the graphs on 10 vertices, J. Graph Theory 9 (1985), 551-562.
- L. E. Chávez-Lomelí, C. Merino, S. D. Noble and M. Ramírez-Ibáñez, Some inequalities for the Tutte polynomial, European J. of Combin. 32 (2011), 422-433.
- Fengming Dong, On graphs having no flow zeros in (1,2), Electron. J. Combin. 22 (2015), Paper #P1.82.
- Fengming Dong, On zero-free intervals of flow polynomials, J. Combin. Theory Ser. B 111 (2015) 181-200.
- Fengming Dong, On graphs whose flow polynomials have real roots only, Electron. J. Combin. 25(3) (2018), #P3.26.
- Fengming Dong, A survey on real zeros of flow polynomials, J. Graph Theory 92 (2019), 361-376.
- Fengming Dong, New expressions for order polynomials and chromatic polynomials, J. Graph Theory 94 (2020), 30-58.
- F.M. Dong, K.L. Teo, C.H.C. Little and M.D. Hendy, Zeros of adjoint polynomials of paths and cycles, Australasian J. Combin. 25 (2002) 167-174.
- G. Farr, A correlation inequality involving stable set and chromatic poly- nomials, J. Combin. Theory Ser. B 58 (1993), 14-21.
- R. Fernández and A. Procacci, Cluster expansion for abstract polymer models: New bounds from an old approach, Comm. Math. Phys. 274 (2007), 123-140.
- A. J. Goodall1, A. Mier and S. D. Noble, The Tutte polynomial char- acterizes simple outerplanar graphs, Electronic Note on Discrete Math. 38 (2011), 639-644.
- A. J. Goodall, C. Merino, A. Mier, and M. Noy, On the evaluation of the Tutte polynomial at the points (1, -1) and (2, -1), Ann. Combin. 12 (2009), 479-492.
- I. Gutman and F. Harary, Generalizations of the matching polynomial, Utilitas Mathematica 24 (1983), 97-106.
- G. Haggard, D.J. Pearce and G.F. Royle, Computing Tutte polynomials, ACM Trans. Math. Software 37 (2010), article 24.
- T. Helgason. Aspects of the theory of hypermatroids, pages 191-213. Lec- ture Notes in Mathematics 411. Springer, Berlin, 1974.
- B. Jackson, An inequality for Tutte polynomials, Combinatorica 30 (2010), 69-81. http://dx.doi.org/10.1007/s00493-0102484-4.
- B. Jackson, A zero-free interval for flow polynomials of near-cubic graphs, Combin. Probab. Comput. 16 (2007) 85-108.
- B. Jackson, Zeros of chromatic and flow polynomials of graphs, J. Geom. 76 (2003), 95-109.
- B. Jackson and A. Sokal, Zero-free regions for multivariate Tutte poly- nomials (alias Potts-model partition functions) of graphs and matroids, J. Combin. Theory Ser. B 99 (2009), 869-903.
- J. L. Jacobsen and J. Salas, Is the five-flow conjecture almost false? J. Combin. Theory Ser. B 103 (2013), 532-565.
- F. Jaeger, Nowhere-zero flow problems, in: L.W. Beineke, R.J. Wilson (Eds.), Selected Topics in Graph Theory, vol. 3, Academic Press, 1988, 71-95.
- W. Kook, V. Reiner, D. Stanton, A Convolution Formula for the Tutte Polynomial, J. Combin. Theory Ser. B 76 (1999), 297-300.
- J.P.S. Kung, a multiplicity identity for characteristic polynomial of a matroid, Advance in Applied Math. 32 (2004), 319-326.
- J.P.S. Kung and G. Royle, Graphs whose flow polynomials have only integral roots, European J. of Combin. 32 (2011), 831-840.
- R.Y. Liu, A new method to find chromatic polynomial of graphs and its applications, Kexue Tongbao 32 (1987), 1508-1509 (In Chinese, English summary).
- P. Martin, Remarkable valuation of the dichromatic polynomial of planar multigraphs, J. Combin. Theory Ser. B 24 (1978), 318-324.
- P. Martin, Enumérations eulériennes dans le multigraphs et invariants de Tutte-Gröthendieck. PhD Thesis, Grenoble, 1977.
- C. Merino, The number of 0-1-2 increasing trees as two different evalua- tions of the Tutte polynomial of a complete graph, Electron. J. Combin. 15 (2008) # N28.
- C. Merino, M. Ibañez and M. G. Rodríguez, A note on some inequalities for the Tutte polynomial of a matroid, Electronic Note on Discrete Math. 34 (2009), 603-607.
- C. Merino and D.J.A. Welsh, Forests, colourings and acyclic orientations of the square lattice, Ann. Combin. 3 (1999), 417-429.
- S. D. Noble and G. F. Royle, The Merino-Welsh conjecture holds for series-parallel graphs, European J. of Combin. 38 (2014) 24-35.
- J.G. Oxley, Colouring, packing and the critical problem, Quart. J. Math. Oxford 29 (1978), 11-22.
- R.B. Potts, Some generalized order-disorder transformations, Proc. Cambridge Philos. Soc. 48 (1952), 106-109.
- R.C. Read and P. Rosenstiehl, On the principal edge tripartition of a graph, Ann. Discrete Math. 3 (1978), 195-226.
- G. C. Rota, On the foundations of combinatorial theory I. Theory of Möbius functions, Zeitschrift für Wahrscheinlichkeitstheorie und ver- wandte Gebiete 2 (1964), 340-368.
- A. D. Sokal, The multivariate Tutte polynomial (alias Potts model) for graphs and matroids, Surveys in combinatorics 2005 (B. Webb, ed.), London Math. Soc. Lecture Note Ser., vol. 327, Cambridge University Press, 2005.
- A.D. Sokal, Chromatic roots are dense in the whole complex plane, Combin. Probab. Comput. 13 (2004), 221-261.
- A. D. Sokal, Bounds on the Complex Zeros of (Di)Chromatic Polynomi- als and Potts-Model Partition Functions, Combin. Probab. Comput. 10 (2001), 41-77.
- Polynomials related to chromatic polynomials (Sect. 9)
- R. Stanley, Acyclic orientations of graphs, Discrete Math. 306 (2006), 905-909. (A new version of [43])
- R. Stanley, Acyclic orientations of graphs, Discrete Math. 5 (1973), 171- 178.
- R. Stanley, A Brylawski decomposition for finite ordered sets, Discrete Math. 4 (1973), 77-82.
- R. Stanley, A chromatic-like polynomial for ordered sets, in: Proc. sec- ond Chapel Hill conference on combinatorial mathematics and its appli- cations (1970), 421-427.
- C. Thomassen, The weak 3-flow conjecture and the weak circular flow conjecture, J. Combin. Theory Ser. B 102 (2012), 521-529.
- C. Thomassen, Spanning trees and orientations of graphs, J. Combin. 1 (2010), 101-111.
- W.T. Tutte, Graph Theory, Addison-Welsey, Reading, Mass., 1984.
- W. T. Tutte, Codichromatic Graphs, J. Combin. Theory Ser. B 16 (1974), 168-174.
- W.T. Tutte, On dichromatic polynomials, J. Combin. Theory 2 (1967), 301-320.
- W.T. Tutte, On the Algebraic Theory of Graph Colorings, J. Combin. Theory 1 (1966), 15-50.
- W.T. Tutte, A contribution to the theory of chromatic polynomials, Canad. J. Math. 6 (1954), 80-91.
- W.T. Tutte, On the imbedding of linear graphs in surfaces, Proc. Lond. Math. Soc. 51 (1950), 474-483.
- W.T. Tutte, A ring in graph theory, Proc. Cambridge Phil. Soc. 43 (1947), 26-40.
- M. L. Vergnas, On the evaluation at (3,3) of the Tutte polynomial of a graph, J. Combin. Theory Ser. B 44 (1988), 367-372.
- A. Vinué, Graphs and matroids determined by their Tutte polynomi- als, Ph.D. Thesis, Departament de Matemàtica Aplicada II, Universitat Politècnica de Catalunya, Barcelona, 2003.
- D. Wagner, The partition polynomial of a finite set system, J. Combin. Theory Ser. A 56 (1991), 138-159.
- C. D. Wakelin, Chromatic Polynomials, Ph.D. Thesis, University of Not- tingham, 1994.
- D.J.A. Welsh, http://garden.irmacs.sfu.ca/?q=category/welsh, also cited in Ref. ([17], Conjecture 1)and in Ref. ([21], Conjecture 33).
- H. Whitney, 2-isomorphic graphs, American J. of Mathematics 55 (1933), 245-254.
- F.Y. Wu, Potts model of magnetism (invited), J. Appl. Phys. 55 (1984), 2421-2425.
- F.Y. Wu, The Potts model, Rev. Mod. Phys. 54 (1982), 235-268. Erra- tum 55 (1983) 315.