Abstract
The present document is a deliverable of the hackAIR project, funded by the European Commission under the Horizon 2020 programme. The current report is the second version of the design guidelines for the hackAIR open sensor fabrication that describes the implementation details of three open hardware solutions along with an initial version of user guidelines for the construction of each one.
References (43)
- Austin, E., et al., Laboratory Evaluation of the Shinyei PPD42NS Low-Cost Particulate Matter Sensor. PloS one, 2015(dx.doi.org/10.1371/journal.pone.0137789).
- Arling, J., Connor, K., Mercieca, M., Air quality sensor network for Philadelphia. 2010.
- Sharp, http://www.sharp-world.com/products/device/lineup/selection/opto/dust/index.html.
- Plantower, http://www.plantower.com/content/?94.html.
- Morpugro, A., F. Pedersini, and A. Reina. A low-cost instrument for environmental particulate analysis based on optical scattering. in IEEE Instrumentation and Measurement Technology Conference (I2MTC),. 2012.
- Sharp, i., http://www.sharpsma.com/webfm_send/1488.
- Sharp, i., http://media.digikey.com/pdf/Data%20Sheets/Sharp%20PDFs/DN7C3CA006_Spec.pdf.
- Amphenol, http://gr.mouser.com/pdfdocs/01Cdustsensordatasheet-English1-22-3.pdf.
- Sharp, i., http://media.digikey.com/pdf/Data%20Sheets/Sharp%20PDFs/GP2Y1023AU0F%20Specs.pdf.
- Shinyei, http://wiki.seeedstudio.com/wiki/Grove_-_Dust_sensor.
- Plantower, i., https://www.google.gr/url?sa=t&rct=j&q=&esrc=s&source=web&cd=2&cad=rja&uact=8&ved=0ahUKEwiK7r
- Sc85XPAhWhCsAKHeuPBB0QFgghMAE&url=http%3A%2F%2Fwww.plantower.com%2Fen%2Fcontent%2F%3 F108.html&usg=AFQjCNFvycVx7qJ7CMsnFUHZtrA0Rhz3pw&sig2=ZnHJl-dXa_OecgCMt--KnQ.
- NovaFitness, https://www.google.gr/url?sa=t&rct=j&q=&esrc=s&source=web&cd=4&ved=0ahUKEwjPq_P78pXPAhXHDM AKHUL3BasQFgg4MAM&url=http%3A%2F%2Fbreathe.indiaspend.org%2Fwp- content%2Fuploads%2F2015%2F11%2Fnova_laser_sensor.pdf&usg=AFQjCNFp3mrXRfBTTe2iyLFZldxzqXgmh w&sig2=pKN0.
- Bradski, G. and A. Kaehler, Learning OpenCV. 1st ed. 2008: O'Reilly Media, Inc.
- Foltz, M.A., Connected Components in Binary Images. Machine Vision, 1997. 6(866).
- Haralick, R.M. and L.G. Shapiro, Computer and Robot Vision. 1st ed. Vol. 1. 1992: Addison-Wesley.
- Ismai, A.H. and M.H. Marhaban. A simple approach to determine the best threshold value for automatic image thresholding. in Signal and Image Processing Applications (ICSIPA), 2009 IEEE International Conference on. 2009. Kuala Lumpur, Malaysia: IEEE.
- Jain, A.K., Fundamentals of Digital Image Processing. PRENTICE HALL INFORMATION AND SYSTEM SCIENCES SERIES, ed. T. Kailath. 1989: Prentice-Hall.
- Kazlouski, Α. and R.Κ. Sadykhov. Plain objects detection in image based on a contour tracing algorithm in a binary image. in Innovations in Intelligent Systems and Applications (INISTA) Proceedings, 2014 IEEE International Symposium on. 2014. Alberobello, Italy: ΙΕΕΕ.
- Lee, S., S. Chung, and R. Park, A comparative performance study of several global thresholding techniques for segmentation. Computer Vision, Graphics, and Image Processing, 1990. 52(2): p. 171-190.
- Lindh, J., Bluetooth Low Energy beacons. 2015, Texas Instruments.
- Nixon, M.S. and A.S. Aguado, Feature Extraction & Image Processing for Computer Vision. 3rd ed. 2012: Elsevier Ltd.
- Nixon S, M. and A. Aguado S, Feature Extraction and Image Processing. 2002: Newnes.
- Otsu, N., A Threshold Selection Method from Gray-Level Histograms. IEEE Transactions on Systems, Man, and Cybernetics, 1979. 9(1): p. 62 -66.
- PRATT, W.K., DIGITAL IMAGE PROCESSING: PIKS Inside. 3rd ed. 2001: Wiley-Interscience.
- Sedgewick, R., Algorithms in C. 3rd ed. 1998: Addison-Wesley.
- Sedgewick, R. and K. Wayne, Algorithms 2001: Pearson Education, Inc.
- Senthilkumaran, N. and S. Vaithegi, Image segmentation by using Thresholding techniques for medical images Computer Science & Engineering: An International Journal (CSEIJ),, 2016. 6(1).
- Theodoridis, S. and K. Koutroumbas, Pattern Recognition (Third Edition). Academic Press, 2006: p. 837.
- Wilson, J.N. and G.X. Ritter, HANDBOOK OF Computer Vision Algorithms in Image Algebra. 2nd ed. 2000: CRC Press.
- Zuiderveld, K., Contrast limited adaptive histogram equalization, in Graphics gems IV. 1994: Academic Press Professional, Inc. San Diego, CA, USA. p. 474-485
- Easton Jr., R.L., Fundamentals of Digital Image Processing. 2010.
- Gonzalez, R.C. and R.E. Woods, Digital Image Processing Second Edition. 2nd ed. 2002: Pearson Prentice Hall.
- Toussaint, G.Τ., Grids, Connectivity and Contour Tracing, in Computational Morphology. 1988.
- Zhang, H., J.E. Fritts, and S.A. Goldman, Image segmentation evaluation: A survey of unsupervised methods. Computer Vision and Image Understanding, 2008. 110(2): p. 260-280.
- Milstein, N., Image Segmentation by Adaptive Thresholding. Spring, 1998.
- Soille, P., Morphological Image Analysis: Principles and Applications. 1999: Springer-Verlag.
- Benitez-Garcia, G., et al., Face Identification Based on Contrast Limited Adaptive Histogram Equalization (CLAHE). Mechanical and Electrical Engineering School of National Polytechnic Institute of Mexico. Mexico, Mexico D.F., 2012.
- Garima, Y., M. Saurabh, and A. Anjali. Contrast Limited Adaptive Histogram Equalization Based Enhancement For Real Time Video System. in Advances in Computing, Communications and Informatics (ICACCI, 2014 International Conference on. 2014. New Delhi, India: IEEE.
- Sasi, N. and V. Jayasree, Contrast Limited Adaptive Histogram Equalization for Qualitative Enhancement of Myocardial Perfusion Images. Engineering, 2013. 5: p. 326-331.
- Schilling, R.J. and S.L. Harris, Fundamentals of Digital Signal Processing Using MATLAB®. 2nd ed. 2012: Cengage Learning.
- Forsyth, D.A. and J. Ponce, Computer Vision: A Modern Approach. 2011: Pearson
- Hartley, R. and A. Zisserman, Multiple View Geometry in Computer Vision. 2nd ed. 2004: Cambridge University Press.