Academia.eduAcademia.edu

Outline

Temporal Coding of Visual Space

2018, Trends in Cognitive Sciences

https://doi.org/10.1016/J.TICS.2018.07.009

Abstract

Establishing a representation of space is a major goal of sensory systems. Spatial information, however, is not always explicit in the incoming sensory signals. In most modalities it needs to be actively extracted from cues embedded in the temporal flow of receptor activation. Vision, on the other hand, starts with a sophisticated optical imaging system that explicitly preserves spatial information on the retina. This may lead to the assumption that vision is predominantly a spatial process: all that is needed is to transmit the retinal image to the cortex, like uploading a digital photograph, to establish a spatial map of the world. However, this deceptively simple analogy is inconsistent with theoretical models and experiments that study visual processing in the context of normal motor behavior. We argue here that, as with other senses, vision relies heavily on temporal strategies and temporal neural codes to extract and represent spatial information. Stable Visual Representations, but a Moving Visual Image Like a camera, the eye forms an image of the external scene on its posterior surface where the retina is located, with its dense mosaic of photoreceptor cells (see Glossary) that convert light into electrochemical signals. At each moment in time, all spatial information is present in the visual signals striking the photoreceptors, which explicitly encode space by their position within the retinal array. This camera model of the eye and the spatial coding idea have long dominated visual neuroscience. Although the specific reference frames of spatial representations (e.g., retinotopic vs spatiotopic) have been intensely debated [1,2], spatial information has always been assumed to originate from the receptor layout in the retina. Alas, the eye does not behave like a camera. While a photographer usually takes great care to ensure that the camera does not move, the eyes insist on moving continuously [3-6]. Humans perform rapid gaze shifts, known as saccades, 2-3 times per second. Even though models of the visual system often assume that the visual input is a stationary image during fixational pauses between successive saccades, small eye movements, known as fixational eye movements, continually occur. These movements displace the stimulus by considerable amounts on the retina, therefore continually changing the light signals striking the photoreceptors [7,8] (Box 1). Furthermore, unlike the film in a camera, the visual system depends on temporal transients. Neurons in the retina, thalamus, and later stages of the visual pathways respond strongly to temporal changes [9-13]. Visual percepts tend to fade away in the complete absence of temporal transients [14-17], and spatial changes that occur too slowly are not even detected by humans [18,19]. These considerations do not appear compatible with the standard idea that space is encoded solely by the position of neurons within spatial maps. They suggest that the visual system combines spatial sampling with temporal processing to extract and encode spatial information.

References (105)

  1. Burr, D.C. and Morrone, M.C. (2011) Spatiotopic coding and remapping in humans. Philos. Trans. R. Soc. B Biol. Sci. 366, 504-515
  2. Hall, N.J. and Colby, C.L. (2011) Remapping for visual stability. Philos. Trans. R. Soc. Lond. B Biol. Sci. 366, 528-539
  3. Barlow, H.B. (1952) Eye movements during fixation. J. Physiol. 116, 290-306
  4. Ratliff, F. and Riggs, L.A. (1950) Involuntary motions of the eye during monocular fixation. J. Exp. Psychol. 40, 687-701
  5. Ditchburn, R.W. (1973) Eye-Movements and Visual Perception, Oxford University Press
  6. Steinman, R.M. et al. (1973) Miniature eye movement. Science 181, 810-819
  7. Kowler, E. (2011) Eye movements: the past 25 years. Vision Res. 51, 1457-1483
  8. Rucci, M. and Poletti, M. (2015) Control and functions of fixa- tional eye movements. Annu. Rev. Vis. Sci. 1, 499-518
  9. Robson, J.G. (1966) Spatial and temporal contrast-sensitivity functions of the visual system. J. Opt. Soc. Am. 56, 1141
  10. Nagano, T. (1980) Temporal sensitivity of the human visual system to sinusoidal gratings. J. Opt. Soc. Am. 70, 711-716
  11. Breitmeyer, B. and Julesz, B. (1975) The role of on and off transients in determining the psychophysical spatial frequency response. Vision Res. 15, 411-415
  12. Benardete, E.A. and Kaplan, E. (1999) The dynamics of primate M retinal ganglion cells. Vis. Neurosci. 16, 355-368
  13. Benardete, E.A. and Kaplan, E. (1997) The receptive field of the primate P retinal ganglion cell. II. Nonlinear dynamics. Vis. Neurosci. 14, 187-205
  14. Troxler, I.P.V. (1804) Über das verschwinden gegebener gegen- stände innerhalb unseres gesichtskreises. Ophthalmol. Bibl. 2, 1-53
  15. Kelly, D.H. (1979) Motion and vision. I. Stabilized images of stationary gratings. J. Opt. Soc. Am. 69, 1266
  16. Poletti, M. and Rucci, M. (2010) Eye movements under various conditions of image fading. J. Vis. 10, 1-18
  17. Steinman, R.M. et al. (1985) Vision in the presence of known natural retinal image motion. J. Opt. Soc. Am. A 2, 226
  18. Rensink, R.A. (2002) Change detection. Annu. Rev. Psychol. 53, 245-277
  19. O'Regan, J.K. et al. (1999) Change-blindness as a result of 'mudsplashes'. Nature 398, 34
  20. Weymouth, F.W. et al. (1928) Visual acuity within the area centralis and its relation to eye movements and fixation. Am. J. Ophthalmol. 11, 947-960
  21. Jacobs, R.J. (1979) Visual resolution and contour interaction in the fovea and periphery. Vision Res. 19, 1187-1195
  22. Curcio, C.A. et al. (1990) Human photoreceptor topography. J. Comp. Neurol. 292, 497-523
  23. Poletti, M. et al. (2013) Microscopic eye movements compen- sate for nonhomogeneous vision within the fovea. Curr. Biol. 23, 1691-1695
  24. Poletti, M. et al. (2017) Selective attention within the foveola. Nat. Neurosci. 20, 1413-1417
  25. Ross, J. et al. (2001) Changes in visual perception at the time of saccades. Trends Neurosci. 24, 113-121
  26. Wurtz, R.H. (2008) Neuronal mechanisms of visual stability. Vision Res. 48, 2070-2089
  27. Westheimer, G. (2009) Hyperacuity. In Encyclopedia of Neuro- science (Squire, L.R., ed.), pp. 45-50, Academic Press
  28. Cherici, C. et al. (2012) Precision of sustained fixation in trained and untrained observers. J. Vis. 12, 31-31
  29. Barlow, H.B. (1957) Increment thresholds at low intensities considered as signal/noise discriminations. J. Physiol. 136, 469-488
  30. Burr, D.C. (1981) Temporal summation of moving images by the human visual system. Proc. R. Soc. London. Ser. B Biol. Sci. 211, 321-339
  31. Barlow, H.B. (1979) Reconstructing the visual image in space and time. Nature 279, 189-190
  32. Burr, D. (1980) Motion smear. Nature 284, 164-165
  33. Burak, Y. et al. (2010) Bayesian model of dynamic image stabili- zation in the visual system. Proc. Natl. Acad. Sci. U. S. A. 107, 19525-19530
  34. Packer, O. and Williams, D.R. (1992) Blurring by fixational eye movements. Vision Res. 32, 1931-1939
  35. Averill, H.L. and Weymouth, F.W. (1925) Visual perception and the retinal mosaic. II. The influence of eye-movements on the displacement threshold. J. Comp. Psychol. 5, 147-176
  36. Marshall, W.H. and Talbot, S.A. (1942) Recent evidence for neural mechanisms in vision leading to a general theory of sensory acuity. In Biological Symposia -Visual Mechanisms (Kluver, H., ed.), pp. 117-164, Jacques Cattel
  37. Rucci, M. and Victor, J.D. (2015) The unsteady eye: an informa- tion-processing stage, not a bug. Trends Neurosci. 38, 195-206
  38. Rucci, M. (2008) Fixational eye movements, natural image statistics, and fine spatial vision. Netw. Comput. Neural Syst. 19, 253-285
  39. Rucci, M. and Casile, A. (2005) Fixational instability and natural image statistics: implications for early visual representations. Netw. Comput. Neural Syst. 16, 121-138
  40. Ahissar, E. and Arieli, A. (2012) Seeing via miniature eye movements: a dynamic hypothesis for vision. Front. Comput. Neurosci. 6, 89
  41. Ahissar, E. and Arieli, A. (2001) Figuring space by time. Neuron 32, 185-201
  42. Burr, D.C. et al. (1986) Seeing objects in motion. Proc. R. Soc. London. Ser. B Biol. Sci. 227, 249-265
  43. Burr, D.C. (1979) Acuity for apparent Vernier offset. Vision Res. 19, 835-837
  44. Burr, D. and Ross, J. (1986) Visual processing of motion. Trends Neurosci. 9, 304-307
  45. Croner, L.J. and Kaplan, E. (1995) Receptive fields of P and M ganglion cells across the primate retina. Vision Res. 35, 7-24
  46. Kagan, I. et al. (2008) Saccades and drifts differentially modulate neuronal activity in V1: effects of retinal image motion, position, and extraretinal influences. J. Vis. 8, 19
  47. Derrington, A.M. and Lennie, P. (1984) Spatial and temporal contrast sensitivities of neurones in lateral geniculate nucleus of macaque. J. Physiol. 357, 219-240
  48. Kuang, X. et al. (2012) Temporal encoding of spatial information during active visual fixation. Curr. Biol. 22, 510-514
  49. Field, D.J. (1987) Relations between the statistics of natural images and the response properties of cortical cells. J. Opt. Soc. Am. A 4, 2379
  50. Poletti, M. et al. (2015) Head-eye coordination at a microscopic scale. Curr. Biol. 25, 3253-3259
  51. Aytekin, M. et al. (2014) The visual input to the retina during natural head-free fixation. J. Neurosci. 34, 12701-12715
  52. Ko, H.-K. et al. (2010) Microsaccades precisely relocate gaze in a high visual acuity task. Nat. Neurosci. 13, 1549-1553
  53. Poletti, M. and Rucci, M. (2016) A compact field guide to the study of microsaccades: challenges and functions. Vision Res. 118, 83-97
  54. Kelly, D.H. (1981) Disappearance of stabilized chromatic gra- tings. Science 214, 1257-1258
  55. Santini, F. et al. (2007) EyeRIS: a general-purpose system for eye-movement-contingent display control. Behav. Res. Meth- ods 39, 350-364
  56. Rucci, M. et al. (2007) Miniature eye movements enhance fine spatial detail. Nature 447, 852-855
  57. Ratnam, K. et al. (2017) Benefits of retinal image motion at the limits of spatial vision. J. Vis. 17, 30
  58. Boi, M. et al. (2017) Consequences of the oculomotor cycle for the dynamics of perception. Curr. Biol. 27, 1268-1277
  59. Koenderink, J.J. (1972) Contrast enhancement and the negative afterimage. J. Opt. Soc. Am. 62, 685
  60. Tulunay-Keesey, U. (1982) Fading of stabilized retinal images. J. Opt. Soc. Am. 72, 440-447
  61. Kulikowski, J.J. and Tolhurst, D.J. (1973) Psychophysical evi- dence for sustained and transient detectors in human vision. J. Physiol. 232, 149-162
  62. Greschner, M. et al. (2002) Retinal ganglion cell synchronization by fixational eye movements improves feature estimation. Nat. Neurosci. 5, 341-347
  63. Krauzlis, R.J. et al. (2017) Neuronal control of fixation and fixa- tional eye movements. Philos. Trans. R. Soc. B Biol. Sci. 372, 20160205
  64. Leopold, D.A. and Logothetis, N.K. (1998) Microsaccades dif- ferentially modulate neural activity in the striate and extrastriate visual cortex. Exp. Brain Res. 123, 341-345
  65. Herrington, T.M. et al. (2009) The effect of microsaccades on the correlation between neural activity and behavior in middle tem- poral, ventral intraparietal, and lateral intraparietal areas. J. Neurosci. 29, 5793-5805
  66. Martinez-Conde, S. et al. (2004) The role of fixational eye move- ments in visual perception. Nat. Rev. Neurosci. 5, 229-240
  67. Ibbotson, M. and Krekelberg, B. (2011) Visual perception and saccadic eye movements. Curr. Opin. Neurobiol. 21, 553-558
  68. Segal, I.Y. et al. (2015) Decorrelation of retinal response to natural scenes by fixational eye movements. Proc. Natl. Acad. Sci. U. S. A. 112, 3110-3115
  69. Snodderly, D.M. et al. (2001) Selective activation of visual cortex neurons by fixational eye movements: implications for neural coding. Vis. Neurosci. 18, 259-277
  70. Gur, M. et al. (1997) Response variability of neurons in primary visual cortex (V1) of alert monkeys. J. Neurosci. 17, 2914-2920
  71. Snodderly, D.M. (2016) A physiological perspective on fixational eye movements. Vision Res. 118, 31-47
  72. Hafed, Z.M. et al. (2009) A neural mechanism for microsaccade generationintheprimatesuperiorcolliculus.Science323,940-943
  73. Chen, C.-Y. et al. (2015) Neuronal response gain enhancement prior to microsaccades. Curr. Biol. 25, 2065-2074
  74. Dan, Y. et al. (1998) Coding of visual information by precisely correlated spikes in the lateral geniculate nucleus. Nat. Neuro- sci. 1, 501-507
  75. Bruno, R.M. and Sakmann, B. (2006) Cortex is driven by weak but synchronously active thalamocortical synapses. Science 312, 1622-1627
  76. Desbordes, G. and Rucci, M. (2007) A model of the dynamics of retinal activity during natural visual fixation. Vis. Neurosci. 24, 217-230
  77. Rucci, M. and Casile, A. (2004) Decorrelation of neural activity during fixational instability: possible implications for the refine- ment of V1 receptive fields. Vis. Neurosci. 21, 725-738
  78. Attneave, F. (1954) Some informational aspects of visual perception. Psychol. Rev. 61, 183-193
  79. Barlow, H.B. (2012) Possible principles underlying the trans- formations of sensory messages. In Sensory Communication (Rosenblith, W.A., ed.), pp. 216-234, MIT Press
  80. Atick, J.J. and Redlich, A.N. (1992) What does the retina know about natural scenes? Neural Comput. 4, 196-210
  81. Ahissar, E. et al. (2016) On the possible roles of microsaccades and drifts in visual perception. Vision Res. 118, 25-30
  82. Ahissar, E. (1998) Temporal-code to rate-code conversion by neuronal phase-locked loops. Neural Comput. 10, 597-650
  83. Ahissar, E. and Vaadia, E. (1990) Oscillatory activity of single units in a somatosensory cortex of an awake monkey and their possible role in texture analysis. Proc. Natl. Acad. Sci. U. S. A. 87, 8935-8939
  84. Benedetto, A. and Morrone, M.C. (2017) Saccadic suppression Is embedded within extended oscillatory modulation of sensitiv- ity. J. Neurosci. 37, 3661-3670
  85. Bengi, H. and Thomas, J.G. (1973) Studies on human ocular tremor. In Perspectives in Biomedical Engineering (Kenedi, R. M., ed.), pp. 281-292, Palgrave Macmillan
  86. Herrmann, C.J.J. et al. (2017) A self-avoiding walk with neural delays as a model of fixational eye movements. Sci. Rep. 7, 12958
  87. Havermann, K. et al. (2014) Fine-scale plasticity of microscopic saccades. J. Neurosci. 34, 11665-11672
  88. Nachmias, J. (1961) Determiners of the drift of the eye during monocular fixation. J. Opt. Soc. Am. 51, 761-766
  89. Steinman, R.M. et al. (1995) Moveo ergo video: natural retinal image motion and its effect on vision. In Exploratory Vision: The Active Eye (Landy, M.S., ed.), pp. 3-50, Springer
  90. Legge, G.E. and Kersten, D. (1987) Contrast discrimination in peripheral vision. J. Opt. Soc. Am. A 4, 1594-1598
  91. Hansen, T. et al. (2009) Color perception in the intermediate periphery of the visual field. J. Vis. 9, 26-26
  92. Nandy, A.S. and Tjan, B.S. (2012) Saccade-confounded image statistics explain visual crowding. Nat. Neurosci. 15, 463-469
  93. Cornsweet, T.N. (1956) Determination of the stimuli for involuntary drifts and saccadic eye movements. J. Opt. Soc. Am. 46, 987
  94. Fiorentini, A. and Ercoles, A.M. (1966) Involuntary eye move- ments during attempted monocular fixation. Atti Fond. Giorgio Ronchi 21, 199-217
  95. Adler, F.H. and Fliegelman, M. (1934) Influence of fixation on the visual acuity. Arch. Ophthalmol. 12, 475-483
  96. Ezenman, M. et al. (1985) Power spectra for ocular drift and tremor. Vision Res. 25, 1635-1640
  97. Ko, H. et al. (2016) Eye movements between saccades: mea- suring ocular drift and tremor. Vision Res. 122, 93-104
  98. Skavenski, A.A. et al. (1979) Quality of retinal image stabilization during small natural and artificial body rotations in man. Vision Res. 19, 675-683
  99. Crick, F.H.C. et al. (1981) An information processing approach to understanding the visual cortex. In The Organization of the Cerebral Cortex (Schmitt, F.O., ed.), pp. 505-533, MIT Press
  100. Shapley, R. and Victor, J. (1986) Hyperacuity in cat retinal ganglion cells. Science 231, 999-1002
  101. Reichardt, W. (1957) Autokorrelationsauswertung als funktion- sprinzip des zentralnervensystems. Z. Naturforsch. 12, 447-457
  102. Adelson, E.H. and Bergen, J.R. (1985) Spatiotemporal energy models for the perception of motion. J. Opt. Soc. Am. A 2, 284-299
  103. Watson, A.B. and Ahumada, A.J. (1985) Model of human visual- motion sensing. J. Opt. Soc. Am. A 2, 322-341
  104. van Santen, J.P.H. and Sperling, G. (1985) Elaborated Reichardt detectors. J. Opt. Soc. Am. A 2, 300
  105. Burr, D. and Thompson, P. (2011) Motion psychophysics: 1985-2010. Vision Res. 51, 1431-1456