Academia.eduAcademia.edu

Outline

A Unified Model of Spatiotemporal Processing in the Retina

1992

Abstract
sparkles

AI

This paper presents a unified computational model of spatiotemporal visual processing in the vertebrate retina, addressing fundamental issues in understanding the relationship between structure and function in this neural structure. The model integrates nonlinear adaptation and linear processing to explain the primary feedforward circuit, accounting for both transient and sustained visual processing streams. It is supported by computer simulations that demonstrate how morphological differences in retinal circuits can lead to distinct functional behaviors in ganglion cells.

References (41)

  1. Ram6n y Cajal, S. La cellule 9, 119-257 (1892).
  2. Dowling, J. The retina: an approachable part of the brain. Belknap, Cambridge, USA, (1987).
  3. Gaudiano, P. Bioi. Cybern. 67, 11-21 (1992).
  4. Gaudiano, P. Bioi. Cybern. 67,23-34 (1992).
  5. Gaudiano, P. In Neural Networks for Vision and Image Processing, Catpenter, G. and Grossberg, S., eds., chapter 8, pages 195-220. MIT Press, Cambridge, USA (1992).
  6. Gaudiano, P. In Invest. Ophthalmol. & Visual Sci. Suppl., page 1346, (1992).
  7. Enroth-Cugell, C. and Robson, J. J. Physiol., Lond. 187,517-552 (1966).
  8. Kolb, H., Nelson, R., and Mariani, A. Vision Res. 21, 1081-1114 (1981).
  9. Lennie, P. Vision Res. 20,561-594 (1980).
  10. Kuffler, S. J. Physiol., Lond. 16, 37-68 (1953).
  11. Barlow, H. J. Physiol., Lond. 119, 69-88 (1953).
  12. Barlow, H., Hill, R., and Levick, W. J. Physiol., Lond. 173,377-407 (1964).
  13. Hochstein, S. and Shapley, R. J. Physiol., Lond. 262,237-264 (1976).
  14. Hochstein, S. and Shapley, R. J. Physiol., Lond. 262, 265-284 (1976).
  15. Saito, H. J. Camp. Neural. 221, 279-288 (1983).
  16. Boycott, B. and Wlissle, H. J. Physiol., Lond. 240, 397-419 (1974).
  17. Cleland, B. and Levick, W. J. Physiol., Lond. 240,421-456 (1974).
  18. Shapley, R. and Perry, V. H. Trends Neurosci. 9, 229-235 (1986).
  19. Derrington, A., Krauskopf, J., and Lennie, P. J. Physiol.,Lond. 357,241-265 (1984).
  20. Hubel, D. and Livingstone, M. J. Neurosci. 10,2222-2237 (1990).
  21. Rushton, W. Ann. N. Y. Acad. Sci. 74, 291-304 (1958).
  22. Grossberg, S. J. Theor. Bioi. 27,291-337 (1970).
  23. Sperling, G. Percept. Psychophys. 8, 143-157 (1970).
  24. Hodgkin, A. L. The conduction of the nervous impulse. Livetpool University Press, Livetpool, (1964).
  25. Grossberg, S. Stud.Appl. Math. 52,217-257 (1973).
  26. Grossberg, S. Neural Networks 1, 17-61 (1988).
  27. Grossberg, S. Studies of Mind and Brain: neural principles of learning, perception, development, cognition and motor control. Reidel, Boston, (1982).
  28. Schiller, P. Trends Neurosci. 15, 86-92 (1992).
  29. Be1gum, J., Dvorak, D., McReynolds, J., and Miyachi, E.-I. J. Physiol., Lond. 388, 233-243 (1987).
  30. Griisser, 0. In The neurosciences fourth study program, Schmitt, F. and Worden, F., eds., pages 247-273. MIT Press, Cambridge, USA (1979).
  31. Muller, F., Wiissle, H., and Voigt, T. J. Neurophysiol. 59(6), 1657-1672 (1988).
  32. Freed, M. and Nelson, R. In Invest. Ophthalmol. & Visual Sci. Suppl., page 906, (1992).
  33. De Valois, R. L. and De Valois, K. K. Spatial Vision. Oxford University Press, New York, (1990).
  34. Richter, J. and Ullman, S. Bioi. Cybern. 43, 127-145 (1982).
  35. Emerson, R. C. Spat. Vision 3, 159-177 (1988).
  36. Macleod, D., Williams, D., and Makous, W. Vision Res. 32, 347-363 (1992).
  37. Hayhoe, M., Levin, M., and Koshel, R. Vision Res. 32,323-333 (1992).
  38. Schnapf, Nunn, Meister, and Baylor. J. Physiol., Lond. 427,681-713 (1990).
  39. Fukuda, Y., Hsiao, C.-F., Watanabe, M., and Ito, H. J. Neurophysiol. 52,999-1013 (1984).
  40. Gaudiano, P. In 15th European Conference on Visual Perception, Pisa, Italy (1992).
  41. Emerson, R., Korenberg, M., and Citron, M. In Advanced methods of physiological system modeling, Marmarelis, V., ed. Plenum Press, New York (1989).