CPM-OFDM Performance over Underwater Acoustic Channels
2021, Journal of Marine Science and Engineering
https://doi.org/10.3390/JMSE9101104Abstract
We propose and evaluate the performance of a continuous phase modulation based orthogonal frequency division multiplexing (CPM-OFDM) transceiver for underwater acoustic communication (UAC). In the proposed technique, the mapper in traditional OFDM is replaced by CPM while a realistic model of underwater channel is employed. Bit error rate (BER) as well as peak to average power ratio (PAPR) performance of the proposed scheme is evaluated using Monte-Carlo simulations. The error performance observed clearly establishes the superiority of CPM-OFDM over traditional OFDM schemes. Specifically, a value of 7/16 or 9/16 for the modulation index gives the best error performance. Furthermore, the error performance of the proposed scheme is within acceptable values up to a transmitter–receiver distance of 1.5 km. Additionally, the PAPR performance of the proposed scheme suggests that like other OFDM schemes, a PAPR reduction scheme is mandatory for acceptable PAPR performance of CPM-OFDM.
References (58)
- Xu, X.; Zhaohui, W.; Shengli, Z.; Wan, L. Parameterizing Both Path Amplitude and Delay Variations of Underwater Acoustic Channels Forblock Decoding of Orthogonal Frequency Division Multiplexing. J. Acoust. Soc. Am. 2012, 131, 4672-4679. [CrossRef]
- Stojanovic, M.; Preisig, J. Underwater Acoustic Communication Channels: Propagation Models and Statistical Characterization. IEEE Commun. Mag. 2009, 47, 84-89. [CrossRef]
- Li, B.; Zhou, S.; Stojanovic, M.; Freitag, L. Pilot-Tone Based Zp-Ofdm Demodulation for an Underwater Acoustic Channel; IEEE: New York, NY, USA, 2006.
- Mohsin, M.; Tasadduq, I.A.; Otero, P.; Poncela, J. Flexible Ofdm Transceiver for Underwater Acoustic Channel: Modeling, Implementation and Parameter Tuning. Wirel. Pers. Commun. 2021, 116, 1423-1441.
- Gang, Q.; Babar, Z.; Ma, L.; Liu, S.; Wu, J. Mimo-Ofdm Underwater Acoustic Communication Systems-A Review. Phys. Commun. 2017, 23, 56-64.
- Sean, M.; Anstett, R.; Anicette, N.; Zhou, S. A Broadband Underwater Acoustic Modem Implementation Using Coherent Ofdm. In Proceedings of the The National Conference On Undergraduate Research (NCUR), Dominican University of California, San Rafael, CA, USA, 12-14 April 2007.
- Stojanovic, M. Low Complexity Ofdm Detector for Underwater Acoustic Channels. Oceans 2006, 2006, 1-6.
- Aulin, T.; Sundberg, C.-E. Bounds on the Performance of Binary Cpfsk Type of Signaling with Input Data Symbol Pulse Shaping. In Proceedings of the NTC'78 National Telecommunications Conference, Birmingham, UK, 3-6 December 1978; Volume 1.
- Aulin, T.; Sundberg, C. Continuous Phase Modulation-Part I: Full Response Signaling. IEEE Trans. Commun. 1981, 29, 196-209.
- Aulin, T.; Rydbeck, N.; Sundberg, C.-E. Continuous Phase Modulation-Part II: Partial Response Signaling. IEEE Trans. Commun. 1981, 29, 210-225. [CrossRef]
- Sun, Y. Optimal Parameter Design of Continuous Phase Modulation for Future Gnss Signals. IEEE Access 2021, 9, 58487-58502.
- Peng, B.; Rossi, P.S.; Dong, H.; Kansanen, K. Time-Domain Oversampled Ofdm Communication in Doubly-Selective Underwater Acoustic Channels. IEEE Commun. Lett. 2015, 19, 1081-1084. [CrossRef]
- Proakis, J.G.; Salehi, M. Digital Communications; McGraw-Hill: New York, NY, USA, 2008.
- Kassan, K.; Farès, H.; Glattli, D.C.; Louët, Y. Performance Vs. Spectral Properties for Single-Sideband Continuous Phase Modulation. IEEE Trans. Commun. 2021, 69, 4402-4416. [CrossRef]
- Güntürkün, U.; Vandendorpe, L. Low-Complexity Lmmse-Sic Turbo Receiver for Continuous Phase Modulation, Based on a Multiaccess-Multipath Analogy. IEEE Trans. Commun. 2020, 68, 7672-7686. [CrossRef]
- Xu, Z.; Wang, Q. Autocorrelation Function of Full-Response Cpm Signals and Its Application to Synchronization. IEEE Access 2019, 7, 133781-133786. [CrossRef]
- Tasadduq, I.A.; Rao, R.K. Ofdm-Cpm Signals. Electron. Lett. 2002, 38, 80-81. [CrossRef]
- Imran, A.T.; Raveendra, K.R. Detection of Ofdm-Cpm Signals over Multipath Channels. In Proceedings of the 2002 IEEE International Conference on Communications, Conference Proceedings, ICC 2002, New York, NY, USA, 28 April-2 May 2002.
- Tasadduq, I.A.; Rao, R.K. Ofdm-Cpm Signals for Wireless Communications. Can. J. Electr. Comput. Eng. 2003, 28, 19-25.
- Tasadduq, I.A.; Rao, R.K. Performance of Optimum and Suboptimum Ofdm-Cpm Receivers over Multipath Fading Channels. Wirel. Commun. Mob. Comput 2005, 5, 365-374. [CrossRef]
- Tasadduq, I.A.; Rao, R.K. Viterbi Decoding of Ofdm-Cpm Signals. Arab. J. Sci. Eng. 2003, 28, 71-80.
- Tasadduq, I.A.; Rao, R.K. Ofdm-Cpm Signals for Indoor Wireless Communications. In Proceedings of the 14th International Conference on Wireless Communications, Calgary, AB, Canada, 8-10 July 2002.
- Wylie, M.; Green, G. On the Performance of Serially Concatenated Cpm-Ofdma Schemes for Aeronautical Telemetry; Air Force Flight Test Center: Edwards, CA, USA, 2011.
- Hisojo, M.A.; Lebrun, J.; Deneire, L. Zero-Forcing Approach for L2-Orthogonal St-Codes with Cpm-Ofdm Schemes and Frequency Selective Rayleigh Fading Channels. In Proceedings of the 2014 IEEE Military Communications Conference, Baltimore, MD, USA, 6-8 October 2014.
- Morioka, K.; Kanada, N.; Futatsumori, S.; Kohmura, A.; Yonemoto, N.; Sumiya, Y.; Asano, D. An Implementation of Cpfsk-Ofdm Systems by Using Software Defined Radio. In Proceedings of the 2014 IEEE Annual Conference on Wireless and Microwave Technology (WAMICON), Tampa, FL, USA, 6 June 204.
- Tasadduq, I.A.; Rao, R.K. Papr Reduction of Ofdm Signals Using Multiamplitude Cpm. Electron. Lett. 2002, 38, 915-917.
- Thompson, S.C.; Ahmed, A.U.; Proakis, J.G.; Zeidler, J.R.; Geile, M.J. Constant Envelope Ofdm. IEEE Trans. Commun. 2008, 56, 1300-1312. [CrossRef]
- Thompson, S.C.; Ahmed, A.U.; Proakis, J.G.; Zeidler, J.R. Constant Envelope Ofdm Phase Modulation: Spectral Containment, Signal Space Properties and Performance. In Proceedings of the IEEE MILCOM 2004 Military Communications Conference, Monterey, CA, USA, 31 October-3 November 2004.
- Tasadduq, I.A. Novel Ofdm-Cpm Signals for Wireless Communications: Properties, Receivers and Performance. Ph.D. Thesis, University of Western Ontario, London, ON, Canada, 2002.
- Hassan, E.S.; Zhu, X.; El Khamy, S.E.; Dessouky, M.I.; El Dolil, S.A.; El Samie, F.E.A. Performance Evaluation of Ofdm and Single-Carrier Systems Using Frequency Domain Equalization and Phase Modulation. Int. J. Commun. Syst. 2011, 24, 1-13.
- Hassan, E.S.; Zhu, X.; El-Khamy, S.E.; Dessouky, M.I.; El-Dolil, S.A.; El-Samie, F.E.A. Chaotic Interleaving Scheme for Single-and Multi-Carrier Modulation Techniques Implementing Continuous Phase Modulation. J. Frankl. Inst. 2013, 350, 770-789. [CrossRef]
- Kiviranta, M.; Mammela, M.; Cabric, D.; Sobel, D.A.; Brodersen, R.W. Constant Envelope Multicarrier Modulation: Performance Evaluation Awgn and Fading Channels. In Proceedings of the MILCOM 2005 IEEE Military Communications Conference, Atlantic City, NJ, USA, 17-20 October 2005.
- Tan, J.; Stuber, L. Constant Envelope Multi-Carrier Modulation. In Proceedings of the 2002 Military Communications Conference (MILCOM), Anaheim, CA, USA, 7-10 October 2002.
- Anderson, J.B.; Aulin, T. Digital Phase Modulation; Plenum: New York, NY, USA, 1986.
- Viterbi, A. Error Bounds for Convolutional Codes and an Asymptotically Optimum Decoding Algorithm. IEEE Trans. Inf. Theory 1967, 13, 260-269. [CrossRef]
- Omura, J. On the Viterbi Decoding Algorithm. IEEE Trans. Inf. Theory 1969, 15, 177-179. [CrossRef]
- Kobayashi, H. Correlative Level Coding and Maximum-Likelihood Decoding. IEEE Trans. Inf. Theory 1971, 17, 586-594. [CrossRef]
- Forney, G.D. The Viterbi Algorithm. Proc. IEEE 1973, 61, 268-278. [CrossRef]
- Hayes, J.F. The Viterbi Algorithm Applied to Digital Data Transmission. IEEE Commun. Mag. 2002, 40, 26-32. [CrossRef]
- Hayes, J. The Viterbi Algorithm Applied to Digital Data Transmission. Commun. Soc. 1975, 13, 15-20. [CrossRef]
- Sklar, B. Digital Communications: Fundamentals and Applications, 2nd ed.; Prentice-Hall: Englewood Cliffs, NJ, USA, 2001.
- Haykin, S. Communication Systems; John Wiley & Sons: Hoboken, NJ, USA, 2008.
- Liu, C.; Zakharov, Y.V.; Chen, T. Doubly Selective Underwater Acoustic Channel Model for a Moving Transmitter/Receiver. IEEE Trans. Veh. Technol. 2012, 61, 938-950.
- Bocus, M.J.; Agrafiotis, D.; Doufexi, A. Underwater Acoustic Video Transmission Using Mimo-Fbmc. In Proceedings of the 2018 OCEANS-MTS/IEEE Kobe Techno-Oceans (OTO), Kobe, Japan, 28-31 May 2018.
- Wang, X.; Wang, J.; He, L.; Song, J. Doubly Selective Underwater Acoustic Channel Estimation with Basis Expansion Model. In Proceedings of the 2017 IEEE International Conference on Communications (ICC), Paris, France, 21-25 May 2017.
- Stojanovic, M. Underwater Acoustic Communications: Design Considerations on the Physical Layer. In Proceedings of the 2008 Fifth Annual Conference on Wireless on Demand Network Systems and Services, Garmisch-Partenkirchen, Germany, 23-25 January 2008.
- Urick, R.J. Sound Propagation in the Sea; Peninsula Publishing: Westport, CT, USA, 1982.
- Wan, L. Underwater Acoustic Ofdm: Algorithm Design, Dsp Implementation, and Field Performance. Ph.D. Thesis, University of Connecticut, Mansfield, CT, USA, 2014.
- Philip, M.M.; Ingard, K.U. Theoretical Acoustics; Princeton University Press: Princeton, NJ, USA, 1986.
- Roth, P.O. Fundamentos de Propagación de Ondas; Universidad de Malaga, Manual: Malaga, Spain, 2015.
- Medwin, H. Speed of Sound in Water: A Simple Equation for Realistic Parameters. J. Acoust. Soc. Am. 1975, 58, 1318-1319.
- Kulhandjian, H.; Melodia, T. Modeling Underwater Acoustic Channels in Short-Range Shallow Water Environments. In Proceedings of the International Conference on Underwater Networks & Systems, Rome, Italy, 12-14 November 2014.
- Radosevic, A.; Proakis, J.G.; Stojanovic, M. Statistical Characterization and Capacity of Shallow Water Acoustic Channels. In Proceedings of the OCEANS 2009-EUROPE, Bremen, Germany, 11-14 May 2009.
- Ruiz-Vega, F.; Clemente, M.C.; Paris, J.F.; Otero, P. Ricean Shadowed Statistical Characterization of Shallow Water Acoustic Channels for Wireless Communications. In IEEE Conf. Underwater Communications: Channel Modelling & Validation, UComms; IEEE: Sestri Levante, Italy, 2012.
- Melodia, T.; Kulhandjian, H.; Kuo, L.; Demirors, E. Mobile Ad Hoc Networking: Cutting Edge Directions. In Advances in Underwater Acoustic Networking; John Wiley & Sons: Hoboken, NJ, USA, 2013.
- Jeruchim, M.; Balaban, P.; Shanmugan, K.S. Simulation of Communication Systems, 2nd ed.; Kluwer Academic/Plenum: New York, NY, USA, 2000.
- Stojanovic, M. On the Relationship between Capacity and Distance in an Underwater Acoustic Communication Channel. ACM SIGMOBILE Mob. Comput. Commun. Rev. 2007, 11, 34-43. [CrossRef]
- Hebbar, R.P.; Poddar, P.G. Generalized Frequency Division Multiplexing-Based Acoustic Communication for Underwater Systems. Int. J. Commun. Syst. 2020, 33, e4292. [CrossRef]