Academia.eduAcademia.edu

Outline

MIMO-OFDM underwater acoustic communication systems-A review

https://doi.org/10.1016/J.PHYCOM.2017.02.007

Abstract

The ever increasing demand for bandwidth, efficiency, spatial diversity and performance of underwater acoustic (UWA) communication has opened doors for the use of Multi-Input Multi-Output (MIMO). A combination of MIMO and Orthogonal Frequency Division Multiplexing (OFDM) has proved to be a promising solution for many scenarios in UWA communication; on the contrary, it also amplifies the design challenges for implementing such schemes to acquire the required bandwidth efficiency. The goal of this study is to provide a comprehensive survey of the latest researches in the field of UWA MIMO-OFDM communication. The previous works are summarized, reviewed and compared according to their years of publication while problems faced by UWA MIMO-OFDM communication are highlighted. The articles are classified according to the focused techniques like channel estimation, equalization, coding and detection. Furthermore the works are compared based on the complexity and performance of the algorithms while some future research issues are identified.

References (68)

  1. M. Chitre, et al. Recent advances in underwater acoustic communications & networking, in: OCEANS 2008, 2008.
  2. S. Kim, Angle-domain frequency-selective sparse channel estimation for underwater MIMO-OFDM systems, IEEE Commun. Lett. 16 (5) (2012) 685-687.
  3. A.G. Armada, et al., Special issue on advances in MIMO-OFDM, Phys. Commun. 4 (4) (2011) 251-253.
  4. K. Grythe, J.E. Hakegard, Non-perfect channel estimation in OFDM-MIMO- based underwater communication, in: OCEANS 2009 -EUROPE, 2009.
  5. H. Esmaiel, D. Jiang, Review article: Multicarrier communication for underwa- ter acoustic channel, Int. J. Commun. Netw. Syst. Sci. 6 (2013) 361-376.
  6. K. Rehan, G. Qiao, A survey of underwater acoustic communication and networking techniques, Res. J. Appl. Sci., Eng. Technol. 5 (3) (2013) 778-789.
  7. M.S. Lenin, Dr.S. Malarkkan, An extensive review of significant researches on channel estimation in MIMO-OFDM, J. Theor. Appl. Inf. Technol. 64 (2) (2014).
  8. L. Baosheng, et al. Scalable OFDM design for underwater acoustic communica- tions, in: 2008 IEEE International Conference on Acoustics, Speech and Signal Processing, 2008.
  9. M. Stojanovic, Low complexity OFDM detector for underwater acoustic channels, in: OCEANS 2006, 2006.
  10. Y.R. Zheng, et al., Frequency-domain channel estimation and equalization for shallow-water acoustic communications, Phys. Commun. 3 (1) (2010) 48-63.
  11. V. Sharma, S. Kumar, Recent developments in MIMO channel estimation techniques, in: Digital Information and Communication Technology and it's Applications, DICTAP, 2012, pp. 1-6.
  12. R.F. Ormondroyd, A robust underwater acoustic communication system using OFDM-MIMO, in: OCEANS 2007 -Europe, 2007.
  13. P.C. Carrascosa, M. Stojanovic, Adaptive channel estimation and data detection for underwater acoustic MIMO -OFDM systems, IEEE J. Ocean. Eng. 35 (3) (2010) 635-646.
  14. K. Devi, D.R. Talwar, Performance enhancement of MIMO-OFDMA: A review paper, Int. J. Comput. Sci. Commun. Eng. 2 (2) (2013).
  15. P.C. Carrascosa, M. Stojanovic, Adaptive MIMO detection of OFDM signals in an underwater acoustic channel, in: OCEANS'08, 2008.
  16. Z. Babar, et al. Shallow water acoustic channel modeling and OFDM simulations, in: OCEANS 2016 MTS/IEEE Monterey, 2016.
  17. K.N. Le, Orthogonal Frequency Division Multiplexing with Diversity for Future Wireless Systems, Bentham Science Publishers, 2012.
  18. M. Beheshti, M.J. Omidi, A.M. Doost-Hoseini, Joint ICI and IBI cancelation for underwater acoustic MIMO-OFDM systems, in: 2011 19th Iranian Conference on Electrical Engineering, 2011.
  19. T.B. Jabeur, K. Abed-Meraim, H. Boujemaa, Channel shortening techniques for differential encoded OFDM, Phys. Commun. 5 (1) (2012) 47-60.
  20. L. Ma, G. Qiao, S. Liu, A combined doppler scale estimation scheme for underwater acoustic OFDM system, J. Comput. Acoust. 23 (04) (2015) 1540004.
  21. K. Tu, et al., Multiple-resampling receiver design for OFDM over doppler- distorted underwater acoustic channels, IEEE J. Ocean. Eng. 38 (2) (2013) 333-346.
  22. J. Huang, S. Zhou, Z. Wang, Performance results of two iterative receivers for distributed MIMO OFDM with large doppler deviations, IEEE J. Ocean. Eng. 38 (2) (2013) 347-357.
  23. K. Srinivasarao, D.B. Prabhakararao, D.M.V.S. Sairam, Peak-to-average power reduction in MIMO OFDM systems using sub-optimal algorithm, Int. J. Distrib. Parallel Syst. (IJDPS) 3 (3) (2012).
  24. G.H. Karande, R.S. Bansode, D.H. Patil, Peak-to-average power reduction in MIMO OFDM systems using SLM technique, IPASJ Int. J. Electron. Commun. (IIJEC) 2 (8) (2014) 46-52.
  25. H. Tiwari, R. Roshan, R.K. Singh, PAPR reduction in MIMO-OFDM using combined methodology of selected mapping (SLM) and partial transmit sequence (PTS), in: 2014 9th International Conference on Industrial and Information Systems, ICIIS, 2014.
  26. G.S.S. Priya, B. Senthil, An efficient scheme for PAPR reduction in Alamouti MIMO-OFDM systems, in: Information Communication and Embedded Systems, ICICES, 2014 International Conference on, 2014.
  27. J. Huang, et al., Progressive intercarrier and co-channel interference mitigation for underwater acoustic multi-input multi-output orthogonal frequency- division multiplexing, Wirel. Commun. Mob. Comput. 14 (3) (2014) 321-338.
  28. B. Li, et al. MIMO-OFDM over an underwater acoustic channel, in: OCEANS 2007, 2007.
  29. B. Li, et al. Further results on high-rate MIMO-OFDM underwater acoustic communications, in: OCEANS 2008, 2008.
  30. Y. Emre, et al. Multi-input multi-output OFDM for shallow-water UWA communications. Acoustics'08 Paris, 2008.
  31. G. Palou, M. Stojanovic, Underwater acoustic MIMO OFDM: An experimental analysis, in: OCEANS 2009, 2009.
  32. B. Li, et al., MIMO-OFDM for high-rate underwater acoustic communications, IEEE J. Ocean. Eng. 34 (4) (2009) 634-644.
  33. J.E. Hakegard, K. Grythe, Effects of channel estimation errors in OFDM-MIMO- based underwater communications, in: Advanced Information Networking and Applications Workshops, 2009. WAINA'09. International Conference on, 2009.
  34. H. Yan, et al. DSP implementation of SISO and MIMO OFDM acoustic modems, in: OCEANS 2010 IEEE -Sydney, 2010.
  35. H. Yan, et al., DSP based receiver implementation for OFDM acoustic modems, Phys. Commun. 5 (1) (2012) 22-32.
  36. R.K. Kahlon, G.S. Walia, A. Sheetal, Channel estimation techniques in MIMO- OFDM systems -review article, Int. J. Adv. Res. Comput. Commun. Eng. 4 (5) (2015).
  37. A. Taneja, Review on channel estimation for MIMO-OFDM systempayal Arora, Int. J. Future Gener. Commun. Netw. 9 (5) (2016) 189-196.
  38. Y. Shen, E. Martinez, Channel Estimation in OFDM Systems, Freescale Semiconductor, 2006.
  39. M. Stojanovic, OFDM for underwater acoustic communications: Adaptive synchronization and sparse channel estimation, in: 2008 IEEE International Conference on Acoustics, Speech and Signal Processing, 2008.
  40. J. Huang, et al. Iterative sparse channel estimation and decoding for underwater MIMO-OFDM, in: OCEANS 2009, 2009.
  41. C.R. Berger, et al. Sparse channel estimation for multicarrier underwater acoustic communication: From subspace methods to compressed sensing, in: OCEANS 2009 -EUROPE, 2009.
  42. S. Mason, et al. An OFDM design for underwater acoustic channels with Doppler spread, in: Digital Signal Processing Workshop and 5th IEEE Signal Processing Education Workshop, 2009. DSP/SPE 2009. IEEE 13th, 2009.
  43. Y. Hua-Nan, G. Shu-Xu, Channel estimation for MIMO-OFDM underwater acoustic communication based on compressed sensing, Syst. Eng. Electron. 34 (6) (2012) 1252-1257.
  44. M. Stojanovic, Adaptive channel estimation for underwater acoustic MIMO OFDM systems, in: Digital Signal Processing Workshop and 5th IEEE Signal Processing Education Workshop, 2009. DSP/SPE 2009. IEEE 13th, 2009.
  45. M. Stojanovic, MIMO OFDM over underwater acoustic channels, in: 2009 Conference Record of the Forty-Third Asilomar Conference on Signals, Systems and Computers, 2009.
  46. K. Byung-Chul, I.T. Lu, Parameter study of OFDM underwater communications system, in: OCEANS 2000 MTS/IEEE Conference and Exhibition, 2000.
  47. L. Huang, et al., Pilot-aided angle-domain channel estimation techniques for MIMO-OFDM systems, IEEE Trans. Veh. Technol. 57 (2) (2008) 906-920.
  48. Z. Sun, et al., Pilots updating channel compensation base on underwater MIMO-OFDM, Appl. Mech. Mater. 198-199 (2012) 1761-1767.
  49. H. Eghbali, M. Stojanovic, S. Muhaidat, Differential decoding for SFBC OFDM systems in underwater MIMO channels, in: IEEE International Conference on Acoustic, Speech and Signal Processing, ICASSP, 2014, pp. 8102-8105.
  50. K. Pelekanakis, A.B. Baggeroer, Exploiting space-time-frequency diversity with MIMO-OFDM for underwater acoustic communications, IEEE J. Ocean. Eng. 36 (4) (2011) 502-513.
  51. X. Ma, C.h. Zhao, G. Qiao, The underwater acoustic MIMO OFDM system chan- nel equalizer basing on independent component analysis, in: Communications and Mobile Computing, 2009. CMC'09. WRI International Conference on, 2009.
  52. M. Beheshti, M.J. Omidi, A.M. Doost-Hoseini, Frequency-domain equalization for MIMO-OFDM over doubly selective channels, in: Int. Symp. Telecommun., Tehran, Iran, 2010.
  53. M. Beheshti, M.J. Omidi, A.M. Doost-Hoseini, Time-domain block and per-tone equalization for MIMO-OFDM in shallow underwater acoustic communication, Wirel. Pers. Commun. 71 (2012) 1193-1215.
  54. Z. Lan, et al. MIMO-OFDM acoustic communication in shallow water, in: 2013 OCEANS -San Diego, 2013.
  55. J. Hao, et al. MIMO TDS-OFDM for underwater acoustic communication with turbo equalization, in: OCEANS 2015 -MTS/IEEE Washington, 2015.
  56. J. Hao, et al. Dual PN padding TDS-OFDM for underwater acoustic communi- cation, in: 2012 Oceans, 2012.
  57. J. Han, L. Zhang, G. Leus, Partial FFT demodulation for MIMO-OFDM over time- varying underwater acoustic channels, IEEE Signal Process. Lett. 23 (2) (2016) 282-286.
  58. J. Tao, Y.R. Zheng, Turbo detection for MIMO-OFDM underwater acoustic communications, Int. J. Wirel. Inf. Netw. 20 (2013) 27-38.
  59. J. Tao, et al. Oversampled OFDM detector for MIMO underwater acoustic communications, in: OCEANS 2010 MTS/IEEE SEATTLE, 2010.
  60. K. Tu, et al. Cooperative MIMO-OFDM communications: Receiver design for Doppler-distorted underwater acoustic channels, in: 2010 Conference Record of the Forty Fourth Asilomar Conference on Signals, Systems and Computers, 2010.
  61. J. Huang, C.R. Berger, S. Zhou, Comparison of basis pursuit algorithms for sparse channel estimation in underwater acoustic OFDM, in: OCEANS 2010 IEEE - Sydney, 2010.
  62. J. Huang, et al. Progressive MIMO-OFDM reception over time-varying underwater acoustic channels, in: 2010 Conference Record of the Forty Fourth Asilomar Conference on Signals, Systems and Computers, 2010.
  63. P. Wang, X. Zhang, M. Song, Doppler compensation based optimal resource allocation for QoS guarantees in underwater MIMO-OFDM acoustic wireless relay networks, in: MILCOM 2013-2013 IEEE Military Communications Conference, 2013.
  64. P. Wang, X. Zhang, M. Song, Power-efficient resource allocation for QoS provisioning in underwater MIMO-OFDM acoustic cooperative wireless networks, in: 2013 IEEE Global Communications Conference, GLOBECOM, 2013.
  65. C.-F. Lin, et al., Underwater acoustic multimedia communication based on MIMO-OFDM, Wirel. Pers. Commun. 71 (2013) 1231-1245.
  66. J. Huang, S. Zhou, P. Willett, Nonbinary LDPC coding for multicarrier underwater acoustic communication, IEEE J. Sel. Areas Commun. 26 (9) (2008) 1684-1696.
  67. N. Upadhyay, M. Tiwari, J. Singh, LDPC based MIMO-OFDM system for shallow water communication using BPSK, Int. J. Electron. Commun. Technol. (IJECT) 6 (4) (2015).
  68. I. Nelson, K.S. Vishvaksenan, V. Rajendran, Performance of turbo coded MIMO- OFDM system for underwater communications, in: Communications and Signal Processing, ICCSP, 2014 International Conference on, 2014. Gang Qiao received the B.S., M.S., and Ph.D. degrees in underwater acoustic engineering from the Harbin Engineering University (HEU), Harbin, China, in 1996, 1999, and 2004, respectively. He visited the Department of Electrical Engineering, University of Washington, Seattle, WA, USA, as a Senior Visiting Scholar in 2015. He has been a full Professor with HEU since 2007. His research interests lie in the areas of underwater acoustic communication and networking, and underwater acoustic target detection and localization.