Application of ANN and ANFIS models for reconstructing
2010, Environmental Monitoring and Assessment
https://doi.org/10.1007/S10661-009-1012-8Abstract
Hydrological yearbooks, especially in developing countries, are full of gaps in flow data series. Filling missing records is needed to make feasibility studies, potential assessment, and realtime decision making. In this research project, it was tried to predict the missing data of gauging stations using data from neighboring sites and a relevant architecture of artificial neural networks (ANN) as well as adaptive neuro-fuzzy inference system (ANFIS). To be able to evaluate the results produced by these new techniques, two traditionally used methods including the normal ratio method and the correlation method were also Electronic supplementary material The online version of this article (
References (22)
- Abebe, A. J., Solomatine, D. P., & Venneker, R. G. W. (2000). Application of adaptive fuzzy rule-based mod- els for reconstruction of missing precipitation event. Hydrological Sciences Journal, 45(3), 425-436.
- Abraham, A., Köppen, M., & Franke, K. (2004). De- sign and application of hybrid intelligent systems. Amsterdam: IOS.
- Bhattacharya, B., & Solomatine, D. P. (2000). Application of artificial neural network in stage-discharge rela- tionship. In Proceedings of the 4th international con- ference on hydroinformatics. Iowa City, USA.
- Dastorani, M. T., & Wright, N. G. (2002). Artificial neural network based real-time river flow prediction. In Pro- ceedings of the fifth international conference of hydro- dynamics. Cardiff, UK, 1-5 July
- Dastorani, M. T., & Wright, N. G. (2003). Flow estima- tion for ungauged catchments using a neural network method. In Proceedings of the 6th international river engineering conference. Ahwaz, Iran.
- Dastorani, M. T., & Wright, N. G. (2004). A hydrody- namic/neural network approach for enhanced river flow prediction. International Journal of Civil Engi- neering, 2(3), 141-148.
- Dawson, C. W., & Wilby, R. (1998a). An artificial neural network approach to rainfall-runoff modelling. Jour- nal of Hydrological Sciences, 43(1), 47-66.
- Dawson, C. W., & Wilby, R. (1998b). A comparison of ar- tificial neural network used for river flow forecasting. Journal of Hydrology & Earth System Sciences, 3(4), 529-540.
- Elshorbagy, A., Simonovic, S. P., & Panu, U. S. (2002). Es- timation of missing stream flow data using principles of chaos theory. Journal of Hydrology (Amsterdam), 255, 123-133. doi:10.1016/S0022-1694(01)00513-3.
- Hsu, K., Gupta, H. V., & Sorooshian, S. (1995). Artifi- cial neural network modeling of the rainfall-runoff process. Journal of Water Resources Research, 31(10), 2517-2530. doi:10.1029/95WR01955.
- Jang, J. R. (1993). Adaptive network based fuzzy inference systems. IEEE Transactions on Systems, Man, & Cy- bernetics, 23, 665-685. doi:10.1109/21.256541.
- Karunanithi, N., Grenney, W. J., Whitley, D., & Bovee, K. (1994). Neural networks for flow prediction. Jour- nal of Computing in Civil Engineering, 8(2), 201-220. doi:10.1061/(ASCE)0887-3801(1994)8:2(201).
- Kim, J., & Kasabov, N. (1999). ANFIS: adaptive neuro- fuzzy inference systems and their application to nonlinear dynamical systems. Neural Networks, 12, 1301-1319.
- Kurian, C. P., George, V. I., Bhat, J., & Aithal, R. S. (2006). ANFIS model for the time series prediction of interior daylight illuminance. AIML Journal, 6(3), 35-40.
- Linsley, R. K., Kohler, M. A., & Paulhus, J. L. H. (1988). Hydrology for engineers. Singapore: McGraw- Hill.
- Lucio, P. S., Conde, F. C., Cavalcanti, I. F. A., Serrano, A. I., Ramos, A. M., & Cardoso, A. O. (2007). Spa- tiotemporal monthly rainfall reconstruction via artifi- cial neural network (case study: South Brazil). Journal of Advances in Geosciences, 10, 67-76
- Lughofer, E. (2003). Online adaptation of Takagi- Sugeno fuzzy inference systems, technical report. Linz- Hagenberg: Fuzzy Logic Laboratorium.
- Luk, K. C., Ball, J. E., & Sharma, A. (1998). Rainfall forecasting through artificial neural networks. In V. Babovic & L. C. Larsen (Eds.), Hydroinformatics '98. Rotterdam: Balkema.
- Minns, A. W., & Hall, M. J. (1996). Artificial neural net- works as rainfall-runoff models. Journal of Hydrolog- ical Sciences, 41(3), 399-417.
- NeuroDimension. (2001). NeuroSolutions. Retrieved from http://www.nd.com.
- Rumelhart, D. E., Hinton, G. E., & Williams, R. J. (1986). Learning internal representations by back propaga- tion. In D. E. Rumelhart, J. L. McClelland, & PDP Research Group (Eds.), Parallel distributed process- ing, (Vol. 1, pp. 318-362). Cambridge, MA: MIT.
- Tokar, S. A., & Johnson, P. A. (1999). Rainfall- runoff modeling using artificial neural networks. Journal of Hydrologic Engineering, 4(3), 232-239. doi:10.1061/(ASCE)1084-0699(1999)4:3(232).