Academia.eduAcademia.edu

Outline

Ultrafast all-optical switching using doped chromoprotein films

2022, arXiv (Cornell University)

https://doi.org/10.48550/ARXIV.2208.02678

Abstract

Next-generation communication networks require > Tbit/s single-channel data transfer and processing with sub-picosecond switches and routers at network nodes. Materials enabling ultrafast all-optical switching have high potential to solve the speed limitations of current optoelectronic circuits. Chromoproteins have been shown to exhibit a fast light-controlled refractive index change much larger than that induced by the optical Kerr effect due to a purely electronic nonlinearity, alleviating the driving energy requirements for optical switching. Here, we report femtosecond transient grating experiments demonstrating the feasibility of < 200-fs all-optical switching by hydrated thin films of photoactive yellow protein, for the first time, and compare the results with those obtained using bacteriorhodopsin. Possibilities for the practical utilization of the scheme in extremely high-speed optical modulation and switching/routing with nominally infinite extinction contrast are discussed.

References (78)

  1. Q. Cheng, M. Bahadori, M. Glick, S. Rumley, and K. Bergman, Optica 5, 1354 (2018).
  2. P.C. Jain, in 2016 Int. Conf. Signal Process. Commun. (2016), pp. 106-110.
  3. D.J. Blumenthal, Sci. Am. 284, 96 (2001).
  4. E.N. Lallas, Opt. Switch. Netw. 31, 22 (2019).
  5. D.J. Blumenthal, APL Photonics 5, 020903 (2020).
  6. V. Kaushik and H. Saini, J. Opt. Commun. 000010151520200276 (2021).
  7. V. Sasikala and K. Chitra, J. Opt. 47, 307 (2018).
  8. C. Monat and Y. Su, APL Photonics 5, 020402 (2020).
  9. B.J. Eggleton, B. Luther-Davies, and K. Richardson, Nat. Photonics 5, 141 (2011).
  10. H. Chen, C. Wang, H. Ouyang, Y. Song, and T. Jiang, Nanophotonics 9, 2107 (2020).
  11. J.M. Hales, J. Matichak, S. Barlow, S. Ohira, K. Yesudas, J.-L. Brédas, J.W. Perry, and S.R. Marder, Science 327, 1485 (2010).
  12. S.A. Haque and J. Nelson, Science 327, 1466 (2010).
  13. P. Ormos, L. Fábián, L. Oroszi, E.K. Wolff, J.J. Ramsden, and A. Dér, Appl. Phys. Lett. 80, 4060 (2002).
  14. A. Dér, S. Valkai, L. Fábián, P. Ormos, J.J. Ramsden, and E.K. Wolff, Photochem. Photobiol. 83, 393 (2007).
  15. S. Krekic, D. Nagy, S.G. Taneva, L. Fábián, L. Zimányi, and A. Dér, Eur. Biophys. J. 48, 465 (2019).
  16. J.A. Stuart, D.L. Marcy, and R.R. Birge, NATO Sci. Ser. SUB Ser. I LIFE Behav. Sci. 335, 16 (2001).
  17. A. Dér and L. Keszthelyi, Bioelectronic Applications of Photochromic Pigments (IOS Press, Szeged, Hungary, 2001).
  18. N. Hampp and T. Juchem, NATO Sci. Ser. SUB Ser. I LIFE Behav. Sci. 335, 44 (2001).
  19. N. Vsevolodov, Biomolecular Electronics: An Introduction via Photosensitive Proteins (Springer Science & Business Media, 2012).
  20. A. Mathesz, L. Fábián, S. Valkai, D. Alexandre, P.V.S. Marques, P. Ormos, E.K. Wolff, and A. Dér, Biosens. Bioelectron. 46, 48 (2013).
  21. S. Roy, M. Prasad, J. Topolancik, and F. Vollmer, J. Appl. Phys. 107, 053115 (2010).
  22. C.P. Singh and S. Roy, Opt. Commun. 218, 55 (2003).
  23. Y.-T. Li, Y. Tian, H. Tian, T. Tu, G.-Y. Gou, Q. Wang, Y.-C. Qiao, Y. Yang, and T.-L. Ren, Sensors 18, 1368 (2018).
  24. L. Fábián, E.K. Wolff, L. Oroszi, P. Ormos, and A. Dér, Appl. Phys. Lett. 97, 142 (2010).
  25. L. Fábián, Z. Heiner, M. Mero, M. Kiss, E.K. Wolff, P. Ormos, K. Osvay, and A. Dér, Opt. Express 19, 18861 (2011).
  26. S. Krekic, T. Zakar, Z. Gombos, S. Valkai, M. Mero, L. Zimányi, Z. Heiner, and A. Dér, Front. Plant Sci. 11, 1567 (2020).
  27. D. Petrovszki, S. Krekic, S. Valkai, Z. Heiner, and A. Dér, Biosensors 11, 432 (2021).
  28. H. Kuramochi, S. Takeuchi, K. Yonezawa, H. Kamikubo, M. Kataoka, and T. Tahara, Nat. Chem. 9, 660 (2017).
  29. H. Kuramochi, S. Takeuchi, H. Kamikubo, M. Kataoka, and T. Tahara, J. Phys. Chem. B 125, 6154 (2021).
  30. J. Briand, J. Léonard, and S. Haacke, J. Opt. 12, 084004 (2010).
  31. O.A. Smitienko, T.B. Feldman, L.E. Petrovskaya, O. V. Nekrasova, M.A. Yakovleva, I. V. Shelaev, F.E. Gostev, D.A. Cherepanov, I.B. Kolchugina, D.A. Dolgikh, V.A. Nadtochenko, M.P. Kirpichnikov, and M.A. Ostrovsky, J. Phys. Chem. B 125, 995 (2021).
  32. A. Yabushita and T. Kobayashi, Biophys. J. 96, 1447 (2009).
  33. K.C. Hasson, F. Gai, and P.A. Anfinrud, Proc. Natl. Acad. Sci. 93, 15124 (1996).
  34. P.E. Konold, E. Arik, J. Weißenborn, J.C. Arents, K.J. Hellingwerf, I.H.M. van Stokkum, J.T.M. Kennis, and M.L. Groot, Nat. Commun. 11, 4248 (2020).
  35. S.-Y. Lu, T.J. Zuehlsdorff, H. Hong, V.P. Aguirre, C.M. Isborn, and L. Shi, J. Phys. Chem. B 125, 12214 (2021).
  36. K. Kubota, T. Shingae, N.D. Foster, M. Kumauchi, W.D. Hoff, and M. Unno, J. Phys. Chem. Lett. 4, 3031 (2013).
  37. Y. Kim, P. Ganesan, J. Jo, S.O. Kim, K. Thamilselvan, and H. Ihee, J. Phys. Chem. B 122, 4513 (2018).
  38. J.K. Lanyi, Annu. Rev. Physiol. 66, 665 (2004).
  39. S.P. Balashov, Isr. J. Chem. 35, 415 (1995).
  40. Y. Imamoto and M. Kataoka, Photochem. Photobiol. 83, 40 (2007).
  41. K.J. Hellingwerf, J. Hendriks, and T. Gensch, J. Phys. Chem. A 107, 1082 (2003).
  42. L. Ujj, S. Devanathan, T.E. Meyer, M.A. Cusanovich, G. Tollin, and G.H. Atkinson, Biophys. J. 75, 406 (1998).
  43. M.A. Cusanovich and T.E. Meyer, Biochemistry 42, 4759 (2003).
  44. A.C. Terentis, L. Ujj, H. Abramczyk, and G.H. Atkinson, Chem. Phys. 313, 51 (2005).
  45. K.A. Nelson, R. Casalegno, R.J.D.D. Miller, and M.D. Fayer, J. Chem. Phys. 77, 1144 (1982).
  46. H.J. Eichler, P. Günter, and D.W. Pohl, Laser-Induced Dynamic Gratings (Springer-Verlag, Berlin, 1986).
  47. A. Dér, P. Hargittai, and J. Simon, J. Biochem. Biophys. Methods 10, 295 (1985).
  48. J.N. Sweetser, D.N. Fittinghoff, and R. Trebino, Opt. Lett. 22, 519 (1997).
  49. M. Li, J.P. Nibarger, C. Guo, and G.N. Gibson, Appl. Opt. 38, 5250 (1999).
  50. A.C. Eckbreth, Appl. Phys. Lett. 32, 421 (1978).
  51. J.A. Shirley, R.J. Hall, and A.C. Eckbreth, Opt. Lett. 5, 380 (1980).
  52. L.T. Mix, E.C. Carroll, D. Morozov, J. Pan, W.R. Gordon, Philip, J. Fuzell, M. Kumauchi, I. Van Stokkum, and G. Groenhof, Biochemistry 57, 1733 (2018).
  53. A. Dér, L. Oroszi, Á. Kulcsár, L. Zimányi, R. Tóth- Boconádi, L. Keszthelyi, W. Stoeckenius, and P. Ormos, Proc. Natl. Acad. Sci. 96, 2776 (1999).
  54. L. Fábián, S. Krekic, R. Tóth-Boconádi, S.G. Taneva, A.M. Bálint, L. Nánai, and A. Dér, in AIP Conf. Proc. (2017), p. 040001.
  55. L. Zimányi, J. Phys. Chem. B 108, 4199 (2004).
  56. C. Gergely, L. Zimányi, and G. Váró, J. Phys. Chem. B 101, 9390 (1997).
  57. G.I. Groma, A. Colonna, J.-L. Martin, and M.H. Vos, Biophys. J. 100, 1578 (2011).
  58. K.A. Nelson, R. Casalegno, R.J.D. Miller, and M.D. Fayer, J. Chem. Phys. 77, 1144 (1982).
  59. A. Colonna, G.I. Groma, and M.H. Vos, Chem. Phys. Lett. 415, 69 (2005).
  60. R.A. Mathies, C.H. Brito Cruz, W.T. Pollard, and C. V Shank, Science 240, 777 (1988).
  61. S. Ruhman, B. Hou, N. Friedman, M. Ottolenghi, and M. Sheves, J. Am. Chem. Soc. 124, 8854 (2002).
  62. A. V Sharkov, A. V Pakulev, S. V Chekalin, and Y.A. Matveetz, Biochim. Biophys. Acta -Bioenerg. 808, 94 (1985).
  63. J. Dobler, W. Zinth, W. Kaiser, and D. Oesterhelt, Chem. Phys. Lett. 144, 215 (1988).
  64. H. Kandori, K. Yoshihara, H. Tomioka, H. Sasabe, and Y. Shichida, Chem. Phys. Lett. 211, 385 (1993).
  65. P. Khoroshyy, A. Dér, and L. Zimányi, J. Photochem. Photobiol. B Biol. 120, 111 (2013).
  66. C.P. Joshi, B. Borucki, H. Otto, T.E. Meyer, M.A. Cusanovich, and M.P. Heyn, Biochemistry 44, 656 (2005).
  67. P. Changenet-Barret, P. Plaza, M.M. Martin, H. Chosrowjan, S. Taniguchi, N. Mataga, Y. Imamoto, and M. Kataoka, Chem. Phys. Lett. 434, 320 (2007).
  68. C.N. Lincoln, A.E. Fitzpatrick, and J.J. van Thor, Phys. Chem. Chem. Phys. 14, 15752 (2012).
  69. A. Hamori, M. Serényi, A. Dér, K. Ferencz, and S. Kökenyesi, in (Proceedings of the European Microwave Association, 2008), pp. 221-225.
  70. R. Tóth-Boconádi, A. Dér, S.G. Taneva, and L. Keszthelyi, Biophys. J. 90, 2651 (2006).
  71. D. Oesterhelt, M. Meentzen, and L. Schuhmann, Eur. J. Biochem. 40, 453 (1973).
  72. Y. Imamoto, T. Ito, M. Kataoka, and F. Tokunaga, FEBS Lett. 374, 157 (1995).
  73. Y. Kim, P. Ganesan, J. Jo, S.O. Kim, K. Thamilselvan, and H. Ihee, J. Phys. Chem. B 122, 4513 (2018).
  74. M. Sheves, N. Friedman, A. Albeck, and M. Ottolenghi, Biochemistry 24, 1260 (1985).
  75. T. Ye, N. Friedman, Y. Gat, G.H. Atkinson, M. Sheves, M. Ottolenghi, and S. Ruhman, J. Phys. Chem. B 103, 5122 (1999).
  76. E. Korchemskaya, N. Burykin, S. Bugaychuk, O. Maksymova, T. Ebrey, and S. Balashov, Photochem. Photobiol. 83, 403 (2007).
  77. D. Dini, M.J.F. Calvete, and M. Hanack, Chem. Rev. 116, 13043 (2016).
  78. K. Hajdu, C. Gergely, M. Martin, L. Zimányi, V. Agarwal, G. Palestino, K. Hernádi, Z. Németh, and L. Nagy, Nanoscale Res. Lett. 7, 400 (2012).