Abstract
Several inorganic and organic materials have been suggested for utilization as nonlinear optical material performing light-controlled active functions in integrated optical circuits, however, none of them is considered to be the optimal solution. Here we present the first demonstration of a subpicosecond photonic switch by an alternative approach, where the active role is performed by a material of biological origin: the chromoprotein bacteriorhodopsin, via its ultrafast BR->K and BR->I transitions. The results may serve as a basis for the future realization of protein-based integrated optical devices that can eventually lead to a conceptual revolution in the development of telecommunications technologies.
References (30)
- S. A. Haque and J. Nelson, "Toward organic all-optical switching," Science 327(5972), 1466-1467 (2010).
- J. M. Hales, J. Matichak, S. Barlow, S. Ohira, K. Yesudas, J.-L. Bredas, J. W. Perry, and R. R. Marder, "Design of polymethine dyes with large third-order optical nonlinearities and loss figures of merit," Science 327(5972), 1485-1488 (2010).
- X. Hu, P. Jiang, C. Ding, H. Yang, and Q. Gong, "Picosecond and low-power all-optical switching based on an organic photonic bandgap microcavity," Nat. Photonics 2(3), 185-189 (2008).
- W. Stoeckenius, R. H. Lozier, and R. A. Bogomolni, "Bacteriorhodopsin and the purple membrane of halobacteria," Biochim. Biophys. Acta 505, 215-278 (1979).
- N. Vsevolodov, Biomolecular electronics (Birkhauser, Boston, 1998).
- E. Korchemskaya, N. Burykin, S. Bugaychuk, O. Maksymova, T. Ebrey, and S. P. Balashov, "Dynamic holography in bacteriorhodopsin/gelatin films: Effects of light-dark adaptation at different humidity," Photochem. Photobiol. 83(2), 403-408 (2007).
- J. A. Stuart, D. L. Marcy, and R. R. Birge, "Photonic and optoelectronic application of bacteriorhodopsin," in Bioelectronic Applications of Photochromic Pigments, A. Dér, and L. Keszthelyi, eds. (2001), pp. 15-29.
- D. Zeisel and N. Hampp, "Spectral relationship of light-induced refractive index and absorption changes in bacteriorhodopsin films containing wildtype BR and the variant BR-D96N," J. Phys. Chem. 96(19), 7788-7792 (1992).
- K. J. Wise, N. B. Gillespie, J. A. Stuart, M. P. Krebs, and R. R. Birge, "Optimization of bacteriorhodopsin for bioelectronic devices," Trends Biotechnol. 20(9), 387-394 (2002).
- S. P. Balashov, "Photoreactions of the photointermediates of bacteriorhodopsin," Isr. J. Chem. 35, 415-428 (1995).
- P. Ormos, Z. Dancsházy, and L. Keszthelyi, "Electric response of a back photoreaction in the bacteriorhodopsin photocycle," Biophys. J. 31(2), 207-213 (1980).
- A. Colonna, G. I. Groma, and M. H. Vos, "Retinal isomerization dynamics in dry bacteriorhodopsin films," Chem. Phys. Lett. 415(1-3), 69-73 (2005).
- G. Váró and L. Keszthelyi, "Photoelectric signals from dried oriented purple membranes of Halobacterium halobium," Biophys. J. 43(1), 47-51 (1983).
- L. Fábián, E. K. Wolff, L. Oroszi, P. Ormos, and A. Dér, "Fast integrated optical switching by the protein bacterorhodopsin," Appl. Phys. Lett. 97(2), 023305 (2010).
- P. Ormos, L. Fábián, L. Oroszi, E. K. Wolff, J. J. Ramsden, and A. Dér, "Protein-based integrated optical switching and modulation," Appl. Phys. Lett. 80(21), 4060-4062 (2002).
- A. Dér, S. Valkai, L. Fábián, P. Ormos, J. J. Ramsden, and E. K. Wolff, "Integrated optical switching based on the protein bacteriorhodopsin," Photochem. Photobiol. 83(2), 393-396 (2007).
- S. Roy, M. Prasad, J. Topolancik, and F. Vollmer, "All-optical switching with bacteriorhodopsin protein coated microcavities and its application to low power computing circuits," J. Appl. Phys. 107(5), 053115 (2010).
- J. Topolancik and F. Vollmer, "All-optical switching in the near infrared with bacteriorhodopsin-coated microcavities," Appl. Phys. Lett. 89(18), 184103 (2006).
- E. K. Wolff and A. Dér, "All-optical logic," Nanotechnol. Percept. 6, 51-56 (2010).
- M. Mero, A. Sipos, G. Kurdi, and K. Osvay, "Generation of energetic femtosecond green pulses based on an OPCPA-SFG scheme," Opt. Express 19(10), 9646-9655 (2011).
- K. Tiefenthaler and W. Lukosz, "Sensitivity of grating couplers as integrated optical chemical sensors," J. Opt. Soc. Am. B 6(2), 209-220 (1989).
- J. Vörös, J. J. Ramsden, G. Csúcs, I. Szendrő, S. M. De Paul, M. Textor, and N. D. Spencer, "Optical grating coupler biosensors," Biomaterials 23(17), 3699-3710 (2002).
- R. A. Mathies, C. H. Brito Cruz, W. T. Pollard, and C. V. Shank, "Direct observation of the femtosecond excited- state cis-trans isomerization in bacteriorhodopsin," Science 240(4853), 777-779 (1988).
- S. Ruhman, B. X. Hou, N. Friedman, M. Ottolenghi, and M. Sheves, "Following evolution of bacteriorhodopsin in its reactive excited state via stimulated emission pumping," J. Am. Chem. Soc. 124(30), 8854-8858 (2002).
- S. Sharkov, A. Pakulev, S. Chekalin, and Y. Matveetz, "Primary events in bacteriorhodopsin probed by subpicosecond spectroscopy," Biochim. Biophys. Acta 808(1), 94-102 (1985).
- A. Aharoni, B. Hou, N. Friedman, M. Ottolenghi, I. Rousso, S. Ruhman, M. Sheves, T. Ye, and Q. Zhong, "Non- isomerizable artificial pigments: Implications for the primary light-induced events in bacteriorhodopsin," Biochemistry (Mosc.) 66(11), 1210-1219 (2001).
- A. Biesso, W. Qian, and M. El-Sayed, "Gold nanoparticle plasmonic field effect on the primary stepof the other photosynthetic system in Nature, bacteriorhodopsin," J. Am. Chem. Soc. 130(11), 3258-3259 (2008).
- J. Dobler, W. Zinth, W. Kaiser, and D. Oesterhelt, "Excited-state reaction dynamics of bacteriorhodopsin studied by femtosecond spectroscopy," Chem. Phys. Lett. 144(2), 215-220 (1988).
- D. W. McCamant, P. Kukura, and R. A. Mathies, "Femtosecond stimulated Raman study of excited-state evolution in bacteriorhodopsin," J. Phys. Chem. B 109(20), 10449-10457 (2005).
- M. L. Applebury, K. S. Peters, and P. M. Rentzepis, "Primary intermediates in the photochemical cycle of bacteriorhodopsin," Biophys. J. 23(3), 375-382 (1978).