Academia.eduAcademia.edu

Outline

Protein-based ultrafast photonic switching

2011, Optics Express

https://doi.org/10.1364/OE.19.018861

Abstract

Several inorganic and organic materials have been suggested for utilization as nonlinear optical material performing light-controlled active functions in integrated optical circuits, however, none of them is considered to be the optimal solution. Here we present the first demonstration of a subpicosecond photonic switch by an alternative approach, where the active role is performed by a material of biological origin: the chromoprotein bacteriorhodopsin, via its ultrafast BR->K and BR->I transitions. The results may serve as a basis for the future realization of protein-based integrated optical devices that can eventually lead to a conceptual revolution in the development of telecommunications technologies.

References (30)

  1. S. A. Haque and J. Nelson, "Toward organic all-optical switching," Science 327(5972), 1466-1467 (2010).
  2. J. M. Hales, J. Matichak, S. Barlow, S. Ohira, K. Yesudas, J.-L. Bredas, J. W. Perry, and R. R. Marder, "Design of polymethine dyes with large third-order optical nonlinearities and loss figures of merit," Science 327(5972), 1485-1488 (2010).
  3. X. Hu, P. Jiang, C. Ding, H. Yang, and Q. Gong, "Picosecond and low-power all-optical switching based on an organic photonic bandgap microcavity," Nat. Photonics 2(3), 185-189 (2008).
  4. W. Stoeckenius, R. H. Lozier, and R. A. Bogomolni, "Bacteriorhodopsin and the purple membrane of halobacteria," Biochim. Biophys. Acta 505, 215-278 (1979).
  5. N. Vsevolodov, Biomolecular electronics (Birkhauser, Boston, 1998).
  6. E. Korchemskaya, N. Burykin, S. Bugaychuk, O. Maksymova, T. Ebrey, and S. P. Balashov, "Dynamic holography in bacteriorhodopsin/gelatin films: Effects of light-dark adaptation at different humidity," Photochem. Photobiol. 83(2), 403-408 (2007).
  7. J. A. Stuart, D. L. Marcy, and R. R. Birge, "Photonic and optoelectronic application of bacteriorhodopsin," in Bioelectronic Applications of Photochromic Pigments, A. Dér, and L. Keszthelyi, eds. (2001), pp. 15-29.
  8. D. Zeisel and N. Hampp, "Spectral relationship of light-induced refractive index and absorption changes in bacteriorhodopsin films containing wildtype BR and the variant BR-D96N," J. Phys. Chem. 96(19), 7788-7792 (1992).
  9. K. J. Wise, N. B. Gillespie, J. A. Stuart, M. P. Krebs, and R. R. Birge, "Optimization of bacteriorhodopsin for bioelectronic devices," Trends Biotechnol. 20(9), 387-394 (2002).
  10. S. P. Balashov, "Photoreactions of the photointermediates of bacteriorhodopsin," Isr. J. Chem. 35, 415-428 (1995).
  11. P. Ormos, Z. Dancsházy, and L. Keszthelyi, "Electric response of a back photoreaction in the bacteriorhodopsin photocycle," Biophys. J. 31(2), 207-213 (1980).
  12. A. Colonna, G. I. Groma, and M. H. Vos, "Retinal isomerization dynamics in dry bacteriorhodopsin films," Chem. Phys. Lett. 415(1-3), 69-73 (2005).
  13. G. Váró and L. Keszthelyi, "Photoelectric signals from dried oriented purple membranes of Halobacterium halobium," Biophys. J. 43(1), 47-51 (1983).
  14. L. Fábián, E. K. Wolff, L. Oroszi, P. Ormos, and A. Dér, "Fast integrated optical switching by the protein bacterorhodopsin," Appl. Phys. Lett. 97(2), 023305 (2010).
  15. P. Ormos, L. Fábián, L. Oroszi, E. K. Wolff, J. J. Ramsden, and A. Dér, "Protein-based integrated optical switching and modulation," Appl. Phys. Lett. 80(21), 4060-4062 (2002).
  16. A. Dér, S. Valkai, L. Fábián, P. Ormos, J. J. Ramsden, and E. K. Wolff, "Integrated optical switching based on the protein bacteriorhodopsin," Photochem. Photobiol. 83(2), 393-396 (2007).
  17. S. Roy, M. Prasad, J. Topolancik, and F. Vollmer, "All-optical switching with bacteriorhodopsin protein coated microcavities and its application to low power computing circuits," J. Appl. Phys. 107(5), 053115 (2010).
  18. J. Topolancik and F. Vollmer, "All-optical switching in the near infrared with bacteriorhodopsin-coated microcavities," Appl. Phys. Lett. 89(18), 184103 (2006).
  19. E. K. Wolff and A. Dér, "All-optical logic," Nanotechnol. Percept. 6, 51-56 (2010).
  20. M. Mero, A. Sipos, G. Kurdi, and K. Osvay, "Generation of energetic femtosecond green pulses based on an OPCPA-SFG scheme," Opt. Express 19(10), 9646-9655 (2011).
  21. K. Tiefenthaler and W. Lukosz, "Sensitivity of grating couplers as integrated optical chemical sensors," J. Opt. Soc. Am. B 6(2), 209-220 (1989).
  22. J. Vörös, J. J. Ramsden, G. Csúcs, I. Szendrő, S. M. De Paul, M. Textor, and N. D. Spencer, "Optical grating coupler biosensors," Biomaterials 23(17), 3699-3710 (2002).
  23. R. A. Mathies, C. H. Brito Cruz, W. T. Pollard, and C. V. Shank, "Direct observation of the femtosecond excited- state cis-trans isomerization in bacteriorhodopsin," Science 240(4853), 777-779 (1988).
  24. S. Ruhman, B. X. Hou, N. Friedman, M. Ottolenghi, and M. Sheves, "Following evolution of bacteriorhodopsin in its reactive excited state via stimulated emission pumping," J. Am. Chem. Soc. 124(30), 8854-8858 (2002).
  25. S. Sharkov, A. Pakulev, S. Chekalin, and Y. Matveetz, "Primary events in bacteriorhodopsin probed by subpicosecond spectroscopy," Biochim. Biophys. Acta 808(1), 94-102 (1985).
  26. A. Aharoni, B. Hou, N. Friedman, M. Ottolenghi, I. Rousso, S. Ruhman, M. Sheves, T. Ye, and Q. Zhong, "Non- isomerizable artificial pigments: Implications for the primary light-induced events in bacteriorhodopsin," Biochemistry (Mosc.) 66(11), 1210-1219 (2001).
  27. A. Biesso, W. Qian, and M. El-Sayed, "Gold nanoparticle plasmonic field effect on the primary stepof the other photosynthetic system in Nature, bacteriorhodopsin," J. Am. Chem. Soc. 130(11), 3258-3259 (2008).
  28. J. Dobler, W. Zinth, W. Kaiser, and D. Oesterhelt, "Excited-state reaction dynamics of bacteriorhodopsin studied by femtosecond spectroscopy," Chem. Phys. Lett. 144(2), 215-220 (1988).
  29. D. W. McCamant, P. Kukura, and R. A. Mathies, "Femtosecond stimulated Raman study of excited-state evolution in bacteriorhodopsin," J. Phys. Chem. B 109(20), 10449-10457 (2005).
  30. M. L. Applebury, K. S. Peters, and P. M. Rentzepis, "Primary intermediates in the photochemical cycle of bacteriorhodopsin," Biophys. J. 23(3), 375-382 (1978).